
IT-2000W
(Windows version)

Technical Reference

Manual

(Version 1.00)

April 1998

Casio Computer Co., Ltd.

Copyright ©1998. All rights reserved.

2

Table of Contents

Preface 5
Chapter 1 Overview 6

1.1 Features of System 6
1.1.1 Development Concept 6
1.1.2 Hardware 6
1.1.3 Software 6
1.1.4 Basic Specifications 7
1.1.5 Model Name 8
1.2 System Configuration 9
1.2.1 Hardware Block Diagram 9
1.2.2 Supported Software 10
1.3 Precautions 13

Chapter 2 Basic Software 16
2.1 Overview 16
2.1.1 Software Configuration 16
2.1.2 Memory Map 17
2.1.3 Drive Configuration 18
2.2 Basic System Operation 19
2.2.1 Overview 19
2.2.2 Power ON Process 21
2.2.3 Power OFF Process 25
2.2.4 Battery Voltage Monitoring Process 27
2.2.5 Low Consumption Current Process 31
2.2.6 How to Replace or Recharge Batteries 34
2.3 Supported Devices 36
2.3.1 Display Unit 36
2.3.2 EL Backlight 38
2.3.3 Touch Panel 39
2.3.4 Disk 40
2.3.5 Serial Communication 42
2.3.6 PC Card 44
2.3.7 Clock Timer 46
2.3.8 Buzzer 47
2.3.9 Barcode Reader 48
2.3.10 Infrared Communication (IR) 49
2.3.11 Keys 50
2.3.12 Sensors 51

Chapter 3 System Menu 52
3.1 Overview 52
3.2 Basic Operation 53
3.3 List of Functions 53
3.4 Key Click Sound Setup 54
3.5 Buzzer Volume Setup 55
3.6 Contrast Adjustment 56
3.7 Auto Backlight Setup 57
3.8 Auto Power OFF Setup 58
3.9 Touch Panel Calibration 59

3

3.10 YMODEM Utility 61
3.11 FLINK Command 65
3.12 System Date/ Time Setup 68
3.13 Command Prompt 69
3.14 RAM Disk Size Change 70
3.15 Disk Format 72
3.16 System Initialization 74
3.17 Password Entry 75

Chapte r 4 MS-DOS 76
4.1 Overview 76
4.2 How to Write CONFIG.SYS and AUTOEXEC.BAT 78
4.3 Card Boot 81

Chapte r 5 MS-Windo ws 84
5.1 Overview 84
5.2 Installation of MS-Windo ws 85
5.2.1 Demonstration Installation 85
5.2.2 Application Installation 86

Chapte r 6 Keyboard Controller 87
6.1 Overview 87
6.2 Keyboard Control 88
6.3 Touch Panel Control Function 90
6.4 Sensor Control 91
6.5 Backlight Control 92

Chapte r 7 Drivers 95
7.1 Overview 95
7.2 System Dri ver 96
7.2.1 Function 96
7.2.2 Startup Method 96
7.3 Clock Control Driver 97
7.3.1 Function 97
7.3.2 Startup Method 98
7.4 Keypad Driver/Hard ware Window Manager 99
7.4.1 Function 99
7.5 PenMouse Dri ver 100
7.5.1 Overview 100
7.5.2 Startup Method 101
7.6 Virtual Ke yboard Dri ver 102
7.6.1 Function 102
7.6.2 Startup Method 103
7.7 System Librar y (main program file) 104
7.7.1 Function 104
7.7.2 Operation Method 104
7.8 Displa y Driver 105
7.8.1 Function 105
7.8.2 Startup Method 105
7.9 COM Driver for IrDA 107
7.9.1 Overview 107
7.9.2 Windo ws 3.1 Communication Functions 109
7.9.3 Setting Up WIN.INI File 135
7.9.4 Installation Method 139

Chapte r 8 Application Development 141
8.1 Overview 141
8.2 Notes on Developing Application 142
8.3 Development Environment 143
8.3.1 Development Environment 143
8.3.2 Application Development Library 143
8.3.3 Simulation Dri ver 144
8.4 Program Development Procedure 145
8.4.1 Creation of Execution File 146

4

8.4.2 Debugging Through Simulation 147
8.4.3 Operation Check on IT-2000 (Using COM2KEY/XY) 149
8.4.4 Installation of Application Program 150
8.5 Simulation Driver 152
8.5.1 System Driver Simulator (SysCall.DLL) 153
8.6 Library 157
8.6.1 Overview 157
8.6.2 System Library 158
8.6.3 Keypad Library 196
8.6.4 OBR Library 213

Setting Operation Mode/DT-9650BCR 223
Setting Operation Mode/DT-9656BCR 228

8.6.5 YMODEM Library 233
8.6.6 FLINK Library 239

Chapter 9 Utility 257
9.1 Overview 257
9.2 Calculator Utility 258
9.3 Clock Utility 260
9.4 Calendar Utility 262
9.5 Remaining Battery Voltage Display Utility 263
9.6 FLINK Utility 264
9.6.1 Communication Parameter Setup Command 265
9.6.2 File Transmission (/S) 267
9.6.3 File Reception (/R) 269
9.6.4 File Append (/A) 271
9.6.5 File Deletion (/D) 272
9.6.6 File Move/Rename (/N) 273
9.6.7 Idle Start 274
9.6.8 Termination Codes and Messages 275
9.7 XY Utility 277
9.8 Reverse Video Utility 282
9.9 COM2KEY Utility 283
9.10 Windows Installation Utility 284

APPENDIX A TFORMAT.EXE 291
APPENDIX B PC Card Driver 292
APPENDIX C Acquisition of Suspend/Resume Event and

Power Status
295

5

Preface

The IT-2000 Technical Reference Manual (hereinafter referred to as this document) is provided to

assist the user in developing programs to run on the Casio IT-2000 (hereinafter referred to as this

terminal or IT-2000 or HT). Microsoft C/C++ Ver.7.0 or later, and the manuals supplied with it, is

required to develop programs for this terminal.

Read Chapter 1 of this manual in its entirety to understand the features of this terminal.

Important notices to user
The information contained in this document may be modified without prior notice.

Casio Computer Co., Ltd. shall not be liable for any outcome that result from the use of this

document and the terminal.

Copyright notice
The contents of this document are protected by the Copyright Law of Japan.

This document may not be reproduced or transferred in part or in whole, in any form without

permission from Casio Computer Co., Ltd.

Copyright © Casio Computer Co., Ltd. All rights reserved.

About MS-DOS 6.22
The MS-DOS copyright is the proprietary of Microsoft Corporation in the United States and is

protected by the United States Copyright Law and International Treaty provisions.

The MS-DOS software shall not be modified, reverse-engineered, decompiled, or disassembled. Any

form of reproduction is also absolutely prohibited.

About MS-Windows
The MS-Windows copyright is the proprietary of Microsoft Corporation in the United States and is

protected by the United States Copyright Law and International Treaty provisions.

The MS-Windows software shall not be modified, reverse-engineered, decompiled, or disassembled.

Any form of reproduction is also absolutely prohibited.

About trademarks
� AT and IBM PC/AT are registered trademarks of International Business Machines

Corporation in the United States.

� MS, MS-DOS, Microsoft C/C++, Visual C ++, Visual Basic, and MS-Windows are registered

trademarks of Microsoft Corporation in the United States.

6

1. Overview

1.1 Features of System

1.1.1 Development Concept

The IT-2000 is a data collection terminal for business use. After years of refinement Casio

Computer Co., Ltd. has developed its hand-held type terminals so that they yield high speed and

a high functionality in comparison to general personal computers. This allows improved efficiency

in software development.

It has adopted the IBM PC/AT architecture and incorporated an IBM PC/AT compatible BIOS.

It uses MS-DOS Ver. 6.22 and MS-Windows for its OS. This has drastically improved the software

development environment and compatibility to IBM PC/AT family applications.

The adoption of a power-saving type 32-bit CPU, the Intel 80486GX, allows the terminal to operate

continuously for eight hours (when the backlight is off).

1.1.2 Hardware

� Global IBM PC/AT architecture standard is adopted.

� Compact design: 85 (W) x 196 (L) x 30 (H) mm, 430 g (approx.)

� Uses a 32-bit CPU (Intel 80486 GX) for 25 MHz high-speed operation.

� High-resolution (192 x 384 pixels), large-size liquid crystal touch panel.

� Supports various interfaces, including RS-232C (8-pin, 14-pin), IR, and PC card.

� High environmental adaptability: Operation temperature at between -5 and 50�, water splash

proof capability conforms to the IPxII standard, etc.

� Uses a small-size, large capacity lithium-ion battery pack as the main battery.

� Incorporates a large capacity flash ROM drive as the user drive.

1.1.3 Software

� MS-DOS Ver. 6.22 and MS-Windows as the operating system.

� IBM PC/AT-compatible BIOS makes it easy to develop user application programs.

� Uses APM 1.1, for advanced low-power consumption capability.

7

� PC card slot conforms to PCMCIA Release 2.1 supporting various PC cards.

� Implements IrDA 1.1 protocol for high-speed infrared communication.

� System menu makes it easy to maintain the IT-2000 and install user application programs.

� Provides various development support tools including C-language libraries and communication

utilities for developing business application programs.

1.1.4 Basic Specifications

IT-2000

Architecture
IBM PC/AT architecture

External dimensions and weight
Dimensions : 85 (W) x 196 (L) x 30 (H) mm
Weight : 430 g (approx.)

CPU
Intel 80486GX(32-bit)

Memory
DRAM : 4 MB
F-ROM : 0/4/8/12/16/24 MB (refer to Chapter 1.1.5)
MASK ROM : 8 MB, Windows file
BIOS ROM : 1 MB (BIOS section: 256 KB, Drive C image: 768 KB)

Display and input
LCD panel : 192 x 384 dots (FSTN semi-transparent LCD), with EL

 backlight
Touch panel : Analog, 192 x 384 dots

Interface
8-pin : RS-232C
14-pin : RS-232C
IrDA : Standards 1.0/1.1
PC Card : PCMCIA Release 2.1

Power supply
Main battery : Lithium-ion battery pack (x 1)
Sub-battery : Lithium-vanadium battery (x 1), lithium battery (x 1)
Operating hours : 8 hours (if backlight off)
Backup period : 2 weeks (approximately)

Environment conditions
: Operation -5 to 50 �Temperature

: Storage -10 to 55 �
Water-splash proof : Conforms to IPxII standard

Software
BIOS : IBM PC/AT compatible
OS : MS-DOS Version 6.22, MS-Windows
F-ROM : NAND flash file system
Basic functions : Suspend/Resume, Auto Power OFF, Auto Backlight OFF,

 Auto Backlight ON/OFF with light intensity detection,
 Auto Power ON with timer/ring signal/detection of
 mounted I/O Box, Battery voltage monitoring function

8

1.1.5 Model Name

The following IT-2000s of Windows version will be available. For price of each model, please

consult with your local Casio representative.

Model RAM FlashROM Total Remark
IT-2000W20 4 Mbytes 4 Mbytes 8 Mbytes
IT-2000W30 4 Mbytes 8 Mbytes 12 Mbytes
IT-2000W40 4 Mbytes 12 Mbytes 16 Mbytes
IT-2000W50 4 Mbytes 16 Mbytes 20 Mbytes
IT-2000W60 4 Mbytes 24 Mbytes 28 Mbytes

9

1.2 System Configuration

1.2.1 Hardware Block Diagram

CPU
i486GX

������� 1

��		
�

Power switch

A/D
converter

Buffer

DRAM

FLASH ROM
(DINOR)

BIOS/DOS

MASK ROM

Lithium-ion
battery

Secondary sub-battery

Primary sub-battery

IrDA
Driver/Receiver

RS-232C
driver

PC card slot

IrDA 1.1

IrDA 1.0

16550

PC card

controller

Analog touch
panel

Keyboard
controller

NAND FLASH
NAND

interface

Key

LCDLCTC

VGA
controller

PMU

COM 1

COM 2

Battery voltage monitoring sensor

Temperature sensor

Illumination sensor

8-pin

14-pin

��

UART/
SIR

BUS
Controller

PMU

ASIC

RTC

RTC

EL BacklightBL controller

10

1.2.2 Supported Software

The software used with this terminal can be divided into two categories: the system software that

includes the BIOS, OS, and device drivers and the user software such as the development tools.

The system software is stored on the DINOR FLASH ROM (1 MB), and the user software is

supported from the SDK CD-ROM (version 4.0) supplied by Casio at free of charge. The following

paragraphs describe the software.

BIOS
The BIOS program is stored in the DINOR FLASH ROM. 256 KB of DINOR FLASH ROM is

allocated specifically as the BIOS storage area.

The BIOS of this terminal consists of the standard PC/AT BIOS section, PEN BIOS for supporting

the touch panel, extension BIOS for supporting devices inherent to this terminal, and APM BIOS for

attain the low-power consumption capability.

MS-DOS Main Part
The main part of the MS-DOS Ver. 6.22 is stored in drive (C:).

In drive (C:) 768 KB of memory area in the DINOR FLASH ROM (1 MB) is allocated. Because of

the capacity limitation, only the essential MS-DOS files are stored in drive (C:). Therefore, if using

an MS-DOS file that is not included in the main part, copy it from the Backup CD-ROM (title on

CD-ROM: MS-DOS version 6.22 Software) to the F-ROM drive (D:) or RAM disk (A:).

For information about each MS-DOS file refer to an MS-DOS manual, commonly available at book

stores.

Device Drivers and System Files
These files must be loaded via CONFIG.SYS or AUTOEXEC.BAT at boot-up. These files are all

stored in drive (C:).

File name Storage location Description
SYSDRV.SYS Basic drive (C:) System driver
TIME.SYS Basic drive (C:) Clock control driver
CS.EXE, etc. Basic drive (C:) PC card driver
CASIOAPM.COM Basic drive (C:) Touch-panel enabler
ENDATA.COM Basic drive (C:) ATA card-related data
CKRAMDSK.EXE
CKRAMDSK.DAT

Basic drive (C:) RAM disk checker

CALIB.EXE Basic drive (C:) Calibration
SYSMENU.EXE Basic drive (C:) System Menu
HWWMAN.EXE Basic drive (C:) Hardware window manager
KEYPAD.EXE
KEYPAD.DAT

Basic drive (C:) Keypad

11

TFORMAT.EXE Basic drive (C:) F-ROM drive formatter

Windows Driver
These drivers are necessary for the Windows to run on IT-2000. Download to F-ROM drive (D:).

File name Storage location Description
VGA_C.DRV
VGA_NC.DRV

MASK ROM drive (E:) Display drivers

PENMOUSE.DRV SDK Mouse driver
VKD.386 SDK Virtual key driver
IRDA.DLL
IRCOMM.DRV

SDK IR communication drivers

Utilities
For information about the utilities refer to Chapter 9 "Utility".

File name Storage location Description
WCAL.EXE SDK Calendar utility
WCALC.EXE SDK Calculator utility
WCLOCK.EXE SDK Clock utility
WCHKBATT.EXE SDK Power status indication utility
XY.EXE XY utility (DOS program)
FLINK.EXE

Basic drive (C:)
FLINK utility (DOS program)

LCDREV.EXE SDK Reverse video utility
(DOS program)

12

Development Tool Libraries
All the libraries of Windows are provided either as Dynamic Link Library (DLL) or as Visual

BASIC Custom Control (VBX). To use these libraries, download first to a directory in F-ROM

drive (D:). The files, *.LIB and *.H, are needed when you develop an application program.

File name Storage location Description
LIBSYSW.LIB
SYSCALL.DLL
SYSCALLP.DLL
SYSLIB.H

SDK System library

PADCTRL.VBX
PADCTRL.H

SDK Keypad library

LIBOBR.LIB
OBRLIB.H
OBRLIB.DLL

SDK OBR library

LIBYMOD.LIB
YMODEM.DLL
YMODEM.H

SDK YMODEM utility library

FLINK.LIB
FLINK.DLL
FLINK.H

SDK FLINK utility library

COM2KEY.EXE Basic driver (C:) COM �> KEY for DEBUG
(DOS program)

PMON.COM
PMOFF.COM

Basic drive (C:) Switching DOZE mode ON/OFF
(DOS program)

13

1.3 Precautions

� If reading the internal clock with INT21h the significant data should include and be limited to

 the seconds digits. On this terminal the time is read directly from the RTC so that the correct

 time can be attained at any moment, even during extended continuous use. As a result the 1/100

 of a second digit is ignored. (refer to Chapter 7.3 “Clock Control Driver”.)

� To count time, the counter of DOS or the function provided for reading time must be used.

Time tick count of Windows will be behind 1 second in every 2 minutes.

� If it is necessary to reboot the system from an application, use the dedicated system library.

However, the reboot operation that uses INT19h of the BIOS I/F does not work.

� Many commercial PC programs use a VGA screen (80 (H) x 25 (V)). If these programs are run

on this terminal (24 (H) x 24 (V)) part of the message may not be displayed on the screen.

For example, some of messages displayed by Windows appear partly (left side of the messages

only) on the screen.

� Writing to a PC card should always be performed by terminating the write action through the

 flash-out process. Otherwise, if system operation is suspended while writing to an SRAM card

 or ATA card, the data on the card may be damaged. To activate this flash-out process use the

 “_dos_commit()” function of Visual C/C++ or Commit Function (68h) of DOS.

� VGA controller is installed in IT-2000. Logically, it can display 16 different colors each in

single color though only 4 colors at a time are distinguishable. In case of development of

application program in single color, by having four colors, such as RGB (255,255,255), RGB

(192,192,192), RGB (128,128,128), RGB (0,0,0), will help you create an easy-to-see

application program.

Note:

If you wish to select a dither color, first display it on the screen to make sure. Due to technical

reasons the display of the B/W LCD may change to reverse video if an application program

developed by the user on a PC is executed without modification on this terminal. To restore the

normal display use the Reverse Video Utility (refer to Chapter 9.8 “Reverse Video Utility”).

� Key input operation is disabled for about one second after the Power has been turned off/on.

This is not a malfunction. This occurs because the monitoring timer starts operating the moment

the Power switch is turned on and does not allow any key input for about one second until this

timer expires. Thus, key input is not possible.

14

� If an LB1 event (low main battery voltage) occurs, the alarm buzzer starts sounding and system

operation is suspended about 10 minutes later. If the alarm buzzer starts sounding, terminate the

current operation as soon as possible and recharge the main battery.

� This system will not execute an alarm indication to be displayed on the LCD screen for an LB2

event (low sub-battery voltage) or LB3 event (low SRAM card battery voltage). Therefore, the

application program side must acquire these alarm status via the system library and display an

appropriate alarm message on the screen.

� If the volume of the buzzer is set to zero by the System Menu or system library, the LB1 (low

main battery voltage) alarm will not be heard. Also, other sounds issued by the system will be

inaudible.

� If the system is booted from a PC card and if a large-size program that resides on the card is

called from AUTOEXEC.BAT, an error may result. To avoid this problem refer to Chapter 4.2

“How to Write CONFIG.SYS and AUTOEXEC.BAT".

� The time limits that can be set for the Auto Power OFF (APO) function are 0 minute, 1 minute

and 30 seconds, 2 minutes and 30 seconds, up to a maximum of 15 minutes and 30 seconds.

This timer has an error of +/-23 seconds.

� Do not open the battery compartment lid while the power is on. If it is opened accidentally, an

emergency alarm sounds. In case such the event occurs, close the lid at once.

When you change the main battery, be sure to switch off the power before opening the lid.

� An SRAM card once formatted with the DT-9000 cannot be used or formatted with IT-2000.

� If the battery pack is installed for the first time after purchase, or if it is installed after the

IT-2000 unit has not been used for a long period of time, install the battery and wait for

approximately eight seconds before turning the power on. This must be done because it takes

approximately eight seconds until sufficient power can be raised for the emergency process.

And, during this interval the power cannot be turned on even if the Power switch is turned on.

� If the power is turned on for the first time after purchase and there is no installed application,

the System Menu will always appear. To start up the application, the application must be

installed first on the IT-2000. (refer to Chapter 8.4.4 “Installation of Application Program”)

15

� The backlight is turned off by means of the ABO (Auto Backlight OFF) function. However, it

is turned off 1.3 seconds after the setup time. This is because the system has 1.3 seconds of

monitoring time before the internal timer is started.

� During the process of loading Windows after boot-up, do not press the Power switch.

Do not press the Power switch because a processing request is issued before the process handler

is installed, resulting that the processing following the request can no longer be achieved.

� This terminal cannot avoid encountering the bugs inherent to Windows. If, for example, the File

Manager is used, dates (such as a date of file creation, etc.) on and after the year of 2000 will

not be displayed correctly. This is caused by a bug within Windows. However, note that the

internal clock will operate properly after the year 2000.

� The touch panel calibration program is not supported as part of Windows. Therefore, if

calibrating the touch panel with Windows, terminate Windows and execute the calibration

program from the DOS prompt screen, then return to Windows.

� The input process from the touch panel should be designed so that every designation can be

accepted with a single click. On this terminal a double-click can be ignored.

� For this system, the two display drivers of VGA_C.DRV and VGA_NC.DRV are provided.

The former will display the mouse cursor and the latter will not display the cursor nor the sand-

glass cursor.

� While a file in SRAM card is being opened under Windows, the operation of the access to the

card is aborted if suspend is executed. This will cause INT24 error when the access to the

SRAM card for writing or closing is continued after the resume. When you use an SRAM card

under Windows, please be sure to perform the operation steps in sequence of “open � write �

close”.

� Do not input “^P” from the DOS prompt. If it is input, “^P” requests DOS to redirect console

output to printer. However, because the IT-2000 does not have a built-in printer, it will enter

into wait mode.

For information about the system library, refer to Chapter 8.6.2, "System Library".

For information about the low voltage alarm notification function refer to Chapter 2.2.4 "Battery

Voltage Monitoring Process"

.

16

2. Basic Software

2.1 Overview

2.1.1 Software Configuration

The following diagram shows the software configuration of the IT-2000W.

 Fig. 2.1

SysCall.DLL

LibSYSW.LIB

Application Program

LibOBRW.LIB

PADCTRL.VBX

PenMouse.drv

OBRLIB.DLL

Handy Terminal Original Hardware & ROM BIOS

LibYMOD.LIB

YMODEM.DL FLINK.DLL

Mouse Event

LibSYSW.LIB

MS-Windows

AT Architecture

&

ROM BIOS

IrDA Driver

VKD.386

VGA_NC.drv

Display Req.

FLINK.LIB

17

2.1.2 Memory Map

The memory map of the IT-2000 is as follows.

 Fig. 2.2

Extended Memory

ROM BIOS

NAND DISK BIOS/VGA BIOS

Memory Mapped Disk I/F

100000h

0F0000h

0E0000h

0DC000h

0D8000h

0C8000h

0C0000h

000000h

0A0000h

PC Card I/F

EMS Windows 16 KB x 4

Reserved

Video Buffer

128 KB

System RAM

640 KB

18

2.1.3 Drive Configuration

The drive configuration differs for each model as described in the following table:

RAM diskDrive A:
[Read and Write] This drive is prepared for use after the RAM disk size is specified from

the System Menu. The contents of this RAM disk will not be erased
through a boot process or by pressing the RESET switch.
Basic drive (DINOR FLASH ROM)Drive C:

[Read Only] This drive starts up MS-DOS. The main body of MS-DOS and
maintenance programs such as the System Menu, etc., are stored in this
drive.
F-ROM driveDrive D:

[Read and Write] Application programs are stored on this drive. The drive size (storage
capacity) differs depending on the model.
Drive for Windows filesDrive E:

[Read Only] A ROM that stores Windows files is assigned to the drive E.
This is a reserved drive on IT-2000D models. In this case note that if this
drive is accessed , an INT24h error will occur.
Drive for booting up from cardDrive F:

[Read Only] This read-only drive functions only while a card is being booted.
For information about the mechanism of booting a card refer to
Chapter 4.3 “Card Boot”.
PC card driveDrive G:

[Read and Write] This drive is required if the application program accesses the PC card.
This drive is prepared for use by loading the PC card driver via
CONFIG.SYS.

Note:

The drive letter of each drive is reserved. Therefore, these drive letters are not changed even if the

RAM disk is not used.

19

2.2 Basic System Operation

2.2.1 Overview

Basic operation of this system on the terminal consists of the suspend/resume process and boot

process operated by means of the Power switch and RESET switch, as shown in the following

diagram.

Fig. 2.3

During normal operation the system status will move between the ON state and the OFF state,

shown in the above diagram, by pressing the power key.

The SUSPEND state is a state from which the previous state can be returned to at any time. The

process of returning from the SUSPEND state to the ON state is called the resume process.

The RESET switch is used to either re-start the system or to initiate the System Menu, which is the

maintenance program. Press this RESET switch to start hardware initialization followed by initiation

of the System Menu. This process is called the System Menu boot process.

If an OFF event occurs while the System Menu is operating, the system shifts to the OFF state.

If the ON key is pressed in the OFF state, the boot process is executed again and an appropriate

application program will be loaded. This process is called the application boot process.

ON STATE

SUSPEND

STATE

OFF STATE

System Menu

OFF EVENT

OFF ProcessRESET SWITCH

System Menu BOOT

RESET SWITCH

System Menu BOOT

ON EVENT

ON Process

ON KEY

Application BOOT

OFF EVENT

OFF Process

INITIAL STATE
ON KEY

System Menu BOOT

20

The following table summarizes the power-on processes provided for this terminal.

System Menu boot
process

Always executes CONFIG.SYS and AUTOEXEC.BAT located
in drive (C:) for starting up the MS-DOS.

Application boot process Searches for CONFIG.SYS and AUTOEXEC.BAT prepared
by the user and starts up MS-DOS from the drive where they are
located.

Resume process Restores the memory conditions that existed before the power
was turned off and continues operating according to the
conditions.

21

2.2.2 Power ON Process

Overview
The ON process is provided to make the system ready for use (ON state). The actual process varies

depending on the settings at that point in time and the last OFF factor (the cause of the OFF action).

ON factors:

� Pressing the Power switch

� Pressing the RESET switch

� Power ON alarm

� Reception of RING signal

� Mounting on the I/O Box

OFF factors:

� Pressing the Power switch

� Pressing the RESET switch

� Auto Power OFF (APO)

� Power OFF by software

� Auto Power OFF due to lower battery voltage

� Emergency Power OFF due to lower battery voltage

Note:

For more information power OFF factors refer to Chapter 2.2.3 "Power OFF Process".

This ON process is divided into two processes: the "Resume process" for continuing the previous

process and the "Boot process" for re-loading MS-DOS. The Boot process can be further broken into

the "Application boot" and the "System Menu boot" processes.

 Fig. 2.4

� Application Boot Process

Searches CONFIG.SYS and AUTOEXEC.BAT files according to the priority given to each

drive and, if these files are found, sets the drive where these files are located as the current drive.

(refer to ”Application Boot Process” on the next page).

ON Process

Resume Process

Boot Process Application Boot Process

System Menu Boot Process

22

� System Menu Boot Process

Press the RESET switch to set the drive C as the current drive, and load MS-DOS from that

drive. As a result, the System Menu that includes the maintenance program will be initiated

(refer to “System Menu Boot Process” on this page).

� Resume Process

This process restores the conditions that existed before the power was most recently turned off.

Any application program that was running at that point in time can be continued.

The contents of the above listed processes will be described in the following sections.

Application Boot Process
The application boot process is used to initiate application programs that have been installed in the

system by the user. The main system will search for CONFIG.SYS and AUTOEXEC.BAT files

according to the priority given to each of the following drive Gs prior to booting MS-DOS.

The system assigns the first drive on which they are found as the current drive, and boots MS-DOS

from it. Consequently, if the CONFIG.SYS and AUTOEXEC.BAT files created by the user are

located on one drive, MS-DOS will be booted from the drive assigned as the current drive. Under

factory defaults it is apparent that the CONFIG.SYS and AUTOEXEC.BAT files created by the

user cannot be found. If this occurs, therefore, the CONFIG.SYS and AUTOEXEC.BAT files

located in drive C: are selected and the System Menu will be initiated.

Priority of the drives:

If the F-ROM drive is installed

 [Card drive (F:)] -> [RAM drive (A:)] -> [F-ROM drive (D:)] -> [Basic drive (C:)]

If the F-ROM drive is not installed

 [Card drive (E:)] -> [RAM drive (A:)] -> [Basic drive (C:)]

Note:

The RAM disk (A:) is valid for use only if the setup is made in the System Menu.

System Menu Boot Process
The System Menu boot process is used to initiate the System Menu, which is nothing but a

maintenance program for this terminal system. The System Menu boot process will be executed only

if the RESET switch at the rear of the main unit is pressed.

If, in addition, a power OFF factor is encountered during the execution of the System Menu, the next

boot process will be the application boot process.

23

Note:

� The RESET switch can be used not only for initiating the System Menu but also as the forced

restart switch when the user application program under development hangs. However, note that

if the RESET switch is pressed while the disk is being written to, the data may be corrupted.

Therefore, the RESET switch should be pressed only while the power is off.

� Clock data or information on the RAM disk will not be lost if the RESET switch is pressed.

Resume Process
When the power is turned on the resume function resumes system operation under the conditions

that existed the last time the power was tuned off. Application programs are continued as soon as the

power is resumed.

Setup of Resume Process ON/OFF
The default settings have been made so that every OFF factor encountered during the operation of an

application program is the objective of the resume process. However, these default setting can be

modified so that the system reacts differently to OFF factors by means of the system library. For

example, according to the default settings, pressing the Power switch will suspend and resume the

execution of an application program. However, it is also possible to simply reboot the system with

the Power switch without activating the resume function if such a setup is made. However, note that

this setup is not permanent. The resume process is replaced by the boot process once only right after

the system library is called.

.

ON Factors
Various ON factors used to turn on the system are explained below.

� Pressing the Power switch

If the Power switch is pressed while the system is off, the system power can be tuned on. When

the power is turned on the system operation sequence proceeds as described in "Relationship

between OFF Factors and ON Processes" on page 24.

� Pressing the RESET switch

Press the RESET switch to turn on the system power. In this case the System Menu will always

be initiated.

24

This terminal has the Auto Power ON function which automatically starts the system. This Auto

Power ON function can operate in one of the following three ways:

� Auto Power ON function (only affects the resume process) activated by alarm

The system power can be turned on (resumed) at the specified time by means of an alarm.

However, this will not function if the next start-up method is set to the boot process in the system

library.

� Auto Power ON function activated by the RING signal

This function can be used if a modem is connected to the 14-pin expansion interface. In this case

the system power can be turned on by the detection of the RING signal from the modem.

Remember that Power ON by means of the RING signal is prohibited by default. Execute this

function using the system library to enable the Power ON function to be activated by the RING

signal. System operation after the power is turned on follows the sequence described in "

Relationship between OFF Factors and ON Processes" on this page.

� Auto Power ON activated by mounting on the I/O Box

The system power can be automatically turned on as soon as this terminal is mounted on the I/O

Box. However, this function is effective only if power is supplied to the I/O Box. This function is

enabled by default, however, it can be disabled using the system library. System operation after

the power is turned on proceeds according to the sequence described in "Relationship between

OFF Factors and ON Processes".

Relationship between OFF Factors and ON Processes
As described in the above overviews, the ON process (the Boot process or Resume process) will run

differently depending on the last OFF factor (what caused the OFF) and the conditions that existed

when the power was turned OFF. The following table shows the relationship between the OFF

factors and the ON processes that take place the next time the power is turned on.

OFF factor If an application is running If the System Menu is on
Power switch
Auto Power OFF
Software OFF
Low battery voltage
(LB1)

Resume process or application
boot process (see note below)

Low battery voltage
(LB0)

Resume process

Application boot process

RESET switch pressed System menu boot process System menu boot process

Note:

Depends on whether the resume function is enabled or disabled. With this setup the next boot

process can be designated as the Application boot process.

25

2.2.3 Power OFF Process

Overview
Turns off the system power. However, the power to all the devices is not turned off and some can be

used for storing the information required for the next resume operation. This process is called the

suspend process and the state of the system while off is called the suspend state.

The suspend process can be divided into two categories: one is the normal suspend process which is

the usual off method and the other is the critical suspend process to execute the emergency escape

process for protecting the system from drops or bumps. Either of these suspend processes will be

selected depending on the OFF factor, as described later.

Normal Suspend Process
If the Power switch is held down for more than one second while system is on, the system power

will be turned off. The process that takes place at this time is the normal suspend process. Before

this suspend process is executed, the application currently running is informed of the suspend

request (OFF factor) by the system. Then the system stores the information required for resumption

and turns off the power.

Hereinafter the suspend process (or OFF process) refers to the normal suspend process.

For information about the method used by each application to detect the occurrence of an OFF factor

(suspend event), refer to Chapter 9.5 “Remaining Battery Voltage Display Utility”.

Critical Suspend
This is a suspend process that takes place in an emergency. Since this critical suspend process should

achieve its escape process with very little power in the system, only essential information can be

retained.

The system will not inform the application currently running of the fact that it is critically

suspended. However, the application will be informed of the fact that it was critically suspended at

resumption.

For information about the method used by each application to receive this information, refer to

Chapter 9.5 “Remaining Battery Voltage Display Utility”.

26

OFF Factors
The OFF factors refer to various causes that make the system enter the OFF state (suspend state), as

follows:

OFF factor Description Suspend
Power switch System operation can be suspended by holding down the

Power switch for more than a second. (see note)
Normal

Auto Power OFF
(APO)

System operation automatically shifts to the suspend state
if key or touch panel operation is not performed for a
specified period of time.
The duration until Auto Power OFF occurs can be set and
modified through the System Menu or system library.

Normal

Power OFF by
Software

The system can be made to enter the suspend state by
calling the system library from the application program.

Normal

Power OFF due to
time-out of low
battery voltage
(LB1) alarm

The system will issue an alarm (buzzer) if the remaining
battery voltage falls below the low main battery voltage
alarm level. If this occurs, recharge the battery or replace
it within ten minutes. If the battery is not charged or
replaced the system automatically shifts to the suspend
state to protect the data.

Normal

If main battery
voltage falls to an
inoperable level
(LB0)

If the terminal is used while the LB1 alarm, mentioned
above, is sounding, the main battery voltage may reach
the LB0 level. If this occurs the system will execute the
critical suspend process and forcibly turn off the power.
Therefore, if the LB1 alarm sounds, recharge or replace
the battery as soon as possible.

Critical

Power OFF due to
RESET switch
pressed

Press the RESET switch to forcibly turn off the system
power. If this is attempted to initiate the System Menu, it
is strongly recommended to complete the application
running at present then turn off the system power with the
power switch before hand.

Restart

For more information about LB0 and LB1, refer to Chapter 2.2.4, "Battery Voltage Monitoring

Process".

For information about the system library refer to Chapter 8.6.2. “System Library”.

For information about the System Menu refer to Chapter 3 “System Menu”.

For information about the method used by each application to acquire a power ON/OFF event, refer

to Chapter 9.5 “Remaining Battery Voltage Display Utility”.

Note:

Hold down the Power switch for more than one second until the power is off. This is done to

prevent the power from accidentally being turned off by the user. In addition, key input will not

be enabled for approximately one second after the Power switch has been pressed.

This occurs because the monitoring timer starts operating the moment the Power switch is

pressed and does not allow key input for about one second until this timer expires.

After this interval, key input becomes possible.

27

2.2.4 Battery Voltage Monitoring Process

This terminal uses a main battery (lithium-ion battery pack) for driving the main unit, and a primary

sub-battery (lithium battery) and a secondary sub-battery (lithium-vanadium battery) for backup.

Application programs can acquire the status of these batteries through the APM BIOS or system

library. Refer to Chapter 9.5 “Remaining Battery Voltage Display Utility”.

Battery Operation Scheme
The following diagram shows how each battery operates within the system.

 Fig. 2.5

[A] This is the power supply route where the fully charged main battery is installed.

While the power is on, the main battery supplies power to all the devices, including the main circuit,

PC card slot and DRAM, and, at the same time, it charges the secondary sub-battery.

In the suspend state, it stops the supply of power to the main circuit and PC card, but continues to

supply power to the DRAM and charge the secondary sub-battery. In this route neither the primary

nor the secondary sub-batteries are used.

[B] This is a power supply route operating where the main battery is absent or not fully charged.

The DRAM is back-upped by the voltage of the secondary sub-battery. The primary sub-battery is

not used.

[C] This power supply route operates if the main battery and secondary sub-batteries are not fully

charged. The DRAM is backed-up by the voltage of the primary sub-battery. If the voltage of this

primary sub-battery falls below the limit level, an LB2 event occurs.

Monitors
primary

sub-battery
voltage.
(LB2)

Main battery

Primary

sub-battery

Secondary sub-battery

(Rechargeable)

Objective devices of backup

(DRAM, etc.)

Main circuit

(CPU and controllers, etc.)

[A] Charge [A](During ON)

SRAM Card
Sub-battery

PC Card Slot[C] [B]
[A]

[A]

(During ON)

Monitors main battery
voltage (LB1�LB0)

Monitors
SRAM card
voltage. (LB3)

28

Low Voltage Level
The IT-2000 continuously monitors the voltage of the main battery, the primary sub-battery, and the

SRAM card battery. This allows an application program to determine through the system library if

the voltage of each battery reaches a warning level.

The following table summarizes the low battery voltage warning levels, which application programs

can acquire through the system library.

Name Abbreviat-
ion

Objective
battery

Description

Low main battery
voltage warning
level

LB1 Main battery Indicates that the main battery voltage has
reached a limit level that requires a warning to
be issued. The system sounds the buzzer to
issue an alarm. If this occurs, the user must
replace the main battery within ten minutes. If
the battery is not changed within ten minutes,
the system automatically executes the suspend
process.

Low sub-battery
voltage warning
level

LB2 Sub-battery Indicates that the sub-battery voltage has
reached a limit level that requires a warning to
be issued. Since the system does not issue an
alarm, the application program must execute a
warning by acquiring the status from the
system library.
The sub-battery must be replaced according to
the procedure described later.

Low SRAM card
battery voltage
warning level

LB3 SRAM card
battery

Indicates that the SRAM card battery voltage
has reached a limit level that requires a
warning to be issued. Since the system does
not issue an alarm, the application program
side must execute a warning by acquiring the
status from the system library.
The SRAM card battery must be replaced
according to the procedure described later.

There is also a main battery inoperable level (LB0). This is the status of the main battery when its

voltage falls below LB1. If this happens, the system executes an emergency power off (critical

suspend). Therefore, this level is also referred to as the emergency escape process level.

This status cannot be acquired from the application side, since the system turns off the power as

soon as the voltage reaches LB0.

29

Main Battery Voltage Monitoring
If the main battery voltage reaches LB1, the system issues a warning buzzer. If this warning buzzer

sounds, either start recharging the battery or replace it with a fully charged battery as soon as

possible. If one of these measures is not taken within ten minutes, the system will forcibly turn off

the power for safety. The following diagram shows the main battery voltage against the time axis.

 Fig. 2.6

(a) If the main battery voltage reaches LB1, the low battery voltage warning alarm sounds.

(b) Unless the main battery is either replaced or recharged within ten minutes, the system power is

automatically turned off to protect the data.

(c) If the main battery voltage falls further and reaches LB0, the system automatically shuts off the

 power to the main unit (critical suspend).

 (d) If the main battery voltage drops below LB0, the main unit power cannot be turned on even if

 the power switch is pressed.

(e) If the main unit is mounted on the I/O Box or connected to the AC adaptor, charging of the

battery is initiated and the main battery voltage will gradually increase.

(f) Once the main battery voltage has been recharged to an operable level, it is possible to turn on

the power to the main unit.

For information about the method used to replace the main battery refer to Chapter 2.2.6 “

How to Replace or Recharge Batteries”.

LB1

LB0

10 minutes

(a)

(b)

(c)
(d)(e)

Generate warning buzzer

Turn the power OFF.

Start recharge.

Voltage level to operate.

Time

Main

Battery

voltage

(a)

30

Sub-batter y Voltage Monitoring
The sub-batteries are used for system backup while the main battery is being replaced. The sub-

batteries consists of two units: the primary sub-battery (button-type lithium battery) and secondary

sub-battery (button-type lithium-vanadium battery). The secondary sub-battery is recharged by the

voltage of the main battery.

While the fully charged main battery is installed , the entire system is backed-up by the main battery,

and the secondary sub-battery is charged by the voltage of the main battery. If the main battery is

removed, the job of system backup shifts to the secondary sub-battery. If the secondary sub-battery

voltage drops below the required level while the main battery is removed, the backup job shifts to

the primary sub-battery (refer to “Battery Operation Scheme” on page 27.).

Application programs are permitted, through the system library, to monitor this primary sub-battery

voltage and determine if it is lower than the warning level (LB2). However the system side will not

issue a warning about the low voltage level (LB2) of the primary sub-battery. Therefore, the

application program must monitor the primary sub-battery voltage via the system library and inform

the user that it must be replaced.

For information about the method used to replace the sub-battery refer to Chapter 2.2.6 “How to

Replace or Recharge Batteries”.

SRAM Card Batter y Voltage Monitoring
This function monitors the SRAM card battery voltage. Application programs are permitted, through

the system library, to monitor this voltage and determine if it is lower than the warning level (LB3).

However, the system side will not issue a warning about the low voltage level (LB3) of the SRAM

card battery. Therefore, the application program must monitor the SRAM card battery voltage via

the system library and inform the user that it must be replaced.

For information about the method used to replace the SRAM card battery refer to Chapter 2.2.6 “

How to Replace or Recharge Batteries”.

Acquiring Po wer Status through APM BIOS
This terminal has APM 1.1 installed. This makes it possible for application programs to obtain

information, such as the percentage of battery voltage remaining or the connector status, via the

APM BIOS. For more information refer to Chapter 9.5 “Remaining Battery Voltage Display

Utilit y”.

Acquiring Po wer Status through Batter y Status Acquisition Utility
With the battery status acquisition utility the user can be advised of the current remaining voltage of

the main battery, sub-battery status, or connector status in real time. For more information refer to

Chapter 9.5 “Remaining Battery Voltage Display Utilit y”.

31

2.2.5 Low Consumption Current Process

This terminal has the APM BIOS installed to provide a low-power consumption capability.

It works in combination with POWER.EXE from Microsoft Corporation. The low-power

consumption capability is further enhanced by the use of unique power management functions,

including Auto Power OFF (APO) function, Auto Backlight OFF (ABO) function, and DOZE/RUN

transit function.

Advanced Power Management Process (APM)
The APM process, which is an interface between the hardware and application programs, has been

developed by the Intel Corporation and Microsoft Corporation for power control purposes.

APM consists of four layers. The layers include hardware, APM BIOS, APM Driver, and the

application, as shown below. With respect to the PC card which is a removable device, the APM

functions are provided from the specific APM driver (CS_APM.EXE).

 Fig. 2.7

Basically, APM functions in the following two ways:

� APM BIOS, which is in the background, controls the power conditions of each device.

� Applications can call the APM BIOS functions to obtain or control the power conditions.

An application that uses the APM BIOS function is called an APM-aware Application. If an

application acquires information related to power conditions via the system library (refer to

Chapter 8.6.2 “System Library”), APM BIOS is actually called within the system library.

It is also possible to directly call APM BIOS from applications. For more information refer to

the APM BIOS manual.

PC Card APM Driver

(CS_APM.EXE)

Applications Layer APM-aware Applications

OS Layer

BIOS Layer

Hardware Layer

APM Driver (POWER.EXE)

APM BIOS

PC Card (Add-in Device)APM BIOS Controlled Device

32

Auto Power OFF Function (APO)
This function automatically shifts the system to the OFF state (suspend state) if no event has taken

place for a specified period of time from the touch panel, the keyboard, COM1, or a file.

This time interval has been set to one minute by default. It can be modified using the System Menu

or system library.

About the activity

Any access to the touch panel, key, COM1, or file that causes results in Auto Power OFF is

defined as "an activity", and it is said that "an activity occurs" if one of these devices is accessed.

In other words, the Auto Power OFF function can be said to have shifted the system to the

suspend state if no activity has occurred for a specified period of time.

The term "activity" is also used in the later description of the ABO function, but it has a different

meaning.

Activity monitored by APO:

� Touch panel input

� Key input

� Access to files

� Access to COM1

Auto Backlight OFF Function (ABO)
This function automatically turns off the backlight if it no access to the touch panel or keys has been

attempted for a specified period of time. This time interval has been set to twenty seconds by default.

It can be modified using the System Menu or system library. Touch panel or key sensing is

performed by the keyboard controller. This keyboard controller not only processes key input or

touch panel input, but it also simultaneously detects activity while executing various background

processes. Consequently, the limit value set as the Auto Backlight OFF time will not be accurate

down to the seconds. The accuracy of this setup value is�10 percent.

Activity monitored by ABO:

� Touch panel input

� Key input

33

DOZE/RUN Transit Function
On this terminal the system will reduce the clock speed of the built-in CPU if no activity (access to

the touch panel, keys, COM1, or file) has occurred for a specified period of time (four seconds).

The state in which the CPU clock speed has been reduced is called the "DOZE state" and the state in

which the CPU is operating at full speed is called the "RUN state". If an activity occurs in the

DOZE state, the system returns to the RUN state. The DOZE/RUN transit function automatically

switches between the DOZE and RUN states.

 Fig. 2.8

Usually, application programs do not have to anxious about the RUN/DOZE state.

The user may tolerate the operation speed since the system shifts to the RUN state whenever the user

attempts an action.

However, the clock speed is quickly reduced and CPU operation is slow if high-speed processing is

attempted intentionally or if system operation continues without user action (e.g. in a long

calculation). In order to avoid this, disable the power management function by means of the system

library (refer to Chapter 8.6.2 “System Library”.).

Activity causing RUN/DOZE transition:

� Touch panel input

� Key input

� Access to files

� Access to COM1

Note:

If the power management function is disabled by the system library, the Auto Power OFF function

(APO) is also disabled. This is because both the power management function and Auto Power OFF

function use the same activity processing routine.

DOZE

Low speed

Touch panel

Key

COM1

File access

No activity for

a specified period

of time

RUN

Full speed

Touch panel

Key

COM1

File access

Generation of

Activity

34

2.2.6 How to Replace or Recharge Batteries

Replacement of Batteries
The method used to replace the main battery, sub-battery, and SRAM card battery are explained here

Failure to observe the correct battery replacement procedure may result in a loss of data. Always

observe the following steps in battery replacement.

Main battery replacement

� Hold down the Power switch for more than one second to turn off the main unit power.

� Make sure that two sub-batteries are installed, then open the battery compartment lid.

� Replace the fully charged main battery, the close the battery compartment lid.

Note:

Make sure that both sub-batteries are installed. If either of the sub-batteries is not installed, the

data may be lost.

Do not open the battery compartment lid while the power is on. If it is opened accidentally, an

emergency alarm sounds. In case such the event occurs, close the lid at once.

Sub-battery replacement

� Hold down the Power switch for more than one second to turn off the main unit power.

� Make sure that the fully charged main battery is installed.

� Replace the primary sub-battery (button-type lithium battery) with a new one.

Note:

� Make sure that the main battery is installed. If the primary sub-battery is removed without

the main battery being in place, data will be lost.

� The secondary sub-battery (button-type lithium-vanadium battery) does not have to

be replaced.

SRAM card battery replacement

� Make a backup of the SRAM card on the F-ROM drive or on some other device.

� Remove the SRAM card from the PC card slot of the main unit.

� Replace the battery of the SRAM card.

� Insert the SRAM card into the PC card slot.

� If the data has been lost, format (refer to Chapter 2.3.6 “PC Card”) the SRAM card then

restore the data on it from the backup device.

35

Note:

The SRAM card is supplied power by the main battery when it is installed in the main unit.

This means that the SRAM card can be used normally as long as it is in the slot, even if the

voltage of the card battery is zero.

In this case, however, the data on the SRAM card will be lost when the card is removed from the

main unit slot. Since the Casio SRAM card is provided with two batteries, the data will not be

lost a short while even if one of them is removed. However, it is recommended that the SRAM

card battery be replaced only after making a backup of the data to avoid accidental loss.

Main Battery Recharge
The main battery can be recharged using either of the following methods:

� Recharging with the charger

According to the "Main battery replacement" procedure described on the previous page, remove

the main battery and place it on the charger.

� Recharging with the AC adaptor

While keeping the main battery to be recharged in the main unit, insert the AC adaptor plug in

the charging jack located on the side of the main unit. This starts the recharging operation.

� Recharging with the I/O Box

If the main unit is mounted on the I/O Box while the main battery to be recharged is in the main

unit, the charging operation starts.

36

2.3 Supported Devices

2.3.1 Display Unit

Hardware Configuration

LCD FSTN semi-transparent liquid crystal display
Resolution 192 x 384 dots
Tone B/W 16 gray scales (4 gray scales are identifiable)
Method VGA compatible
VRAM 512 KB
RAM for hardware window 32 KB

Note:

With B/W liquid crystal displays the actual display colors will be changed to reverse video.

About the Display Screen
Since this terminal has a VGA controller, it can internally control the entire VGA (640 x 480 dots)

screen. However, only the 192 x 384 dots, which corresponds to the upper left portion of the VGA

screen, can be displayed.

 Fig. 2.9

37

Software Functions
Standard Video BIOS is supported. This supports the following video modes:

Mode No Mode Type Characters Resolution Colors Memory Segment
00h Text 40 x 25 320 x 200 16 B800h
01h Text 40 x 25 320 x 200 16 B800h
02h Text 80 x 25 640 x 200 16 B800h
03h Text 80 x 25 640 x 200 16 B800h
04h Graphics 320 x 200 4 B800h
05h Graphics 320 x 200 4 B800h
06h Graphics 640 x 200 2 B800h
07h Text 80 x 25 640 x 350 2 B000h
0Dh Graphics 320 x 200 16 A000h
0Eh Graphics 640 x 200 16 A000h
10h Graphics 640 x 350 16 A000h
11h Graphics 640 x 480 2 A000h
12h Graphics 640 x 480 16 A000h

Hardware Window
The hardware window provides the superimpose function for the VGA controller.

With this hardware window a pop-up screen can be displayed without affecting the operation of

the application program. This hardware window is used in the keypad driver and various utility

programs.

Contrast Adjustment
The contrast of the liquid crystal display automatically compensates for temperature changes.

The user can adjust the offset value (refer to Chapter 6 “Keyboard Controller”) for the automatically

adjusted contrast in the following ways.

� Press the 8 key after the Fn key to increase the contrast offset one step.

� Press the 9 key after the Fn key to decrease the contrast offset one step.

� Call the system library to increase/decrease the contrast offset.

38

2.3.2 EL Backlight

Overview
This terminal has the following functions to control the backlight. For more information refer to

Chapter 6 “Keyboard Controller”.

� Manual Backlight ON/OFF function

� Auto Backlight OFF function (ABO)

� Auto Backlight Control function (ABC)

Manual Backlight ON/OFF Function
The backlight can be turned on and off with the following methods.

� Press the 7 key after the Fn key to turn on or off the backlight.

� Call the system library to turn on or off the backlight.

Auto Backlight OFF Function
This function automatically turns off the backlight when no key or touch panel input has been

occurred in the specified period of time. The time interval until the backlight is automatically turned

off can be set with the System Menu or the system library.

Auto Backlight Control Function
This function detects the intensity of ambient light and automatically turns on or off the backlight

accordingly. This function is set to off by default, however, it can be set to on using the System

Menu or system library. For more information about the system library refer to Chapter 8.6.2 “

System Library”.

39

2.3.3 Touch Panel

Hardware Configuration

Method : Analog type touch panel
Resolution : 192 x 384 dots

Software Function
To enable application programs to acquire touch panel coordinates, the following two pieces of

software are provided:

� PENMOUSE.COM

With this PENMOUSE.COM application programs can acquire touch panel input through the

mouse I/F. (refer to Chapter 7.5 “PenMouse Driver”.)

� KEYPAD.EXE

With this keypad driver application programs can perform character input through the touch

panel. However, it cannot be used concurrently with PENMOUSE.COM. (refer to Chapter 7.4

“Keypad Driver / Hardware Window Manager”.)

40

2.3.4 Disk

Types of Disk
Type Drive name Capacity

RAM disk A 0 to 1920 Kbytes
Basic drive C 768 Kbytes
F-ROM disk D 0, 4, 8, 12, 16 or 24 Mbytes
PC card G or F SRAM card, ATA card

Note:

The drive name of the PC card varies for each model. For more information refer to Chapter 2.1.3

“Drive Configuration”.

RAM Disk
Part of the main RAM can be assigned on the RAM disk using System Menu.

The contents of the RAM disk will not be erased if the power switch is turned on and off, since they

are backed-up by the main battery and the sub-batteries. The contents of the RAM disk are not

affected by pressing the RESET switch either. Since this RAM disk permits the use of INT13h, it

can be used as the built-in fixed disk. Its drive name is A.

Note:

Since the RAM disk shares part of the main memory installed in the main unit, a large-RAM disk

size may affect the operation of application programs.

Basic Drive
Part of the DINOR FLASH ROM is used as the basic drive. It cannot be written to.

Disk capacity : 768 KB

Since the basic drive supports the INT13h (Read Only) interrupt, it can be used as the built-in fixed

drive. Its drive name is C.

41

F-ROM Drive
The F-ROM drive is supported as a disk for which both read and write operations are possible (only

for models with the F-ROM drive). Various disk capacities are supported for each model:

Disk capacity: 0 (models without F-ROM), 4M, 8M, 12M, 16M or 24 MB.

To format the F-ROM drive use the System Menu. For information about the formatting method

refer to Chapter 3 “System Menu”. In this process the System Menu will call TFORMAT.EXE from

drive (C:) to format the F-ROM drive.

For more information about the TFORMAT.EXE operation refer to Appendix A TFORMAT.

Since this F-ROM drive supports the INT13h interrupt, it can be used as the built-in fixed drive. Its

drive name is D.

PC Card Drive
If either an SRAM card or ATA F-ROM card is inserted in the PC card slot, it can be used as the

drive G (Drive F for models without the F-ROM drive). If the ATA F-ROM card is inserted in the

card slot, the system can boot up according to the CONFIG.SYS/AUTOEXEC.BAT files included

on this card. This start-up method is called "card boot".

For more information about card boot refer to Chapter 4.3 “Card Boot”.

42

2.3.5 Serial Communication

Available Interfaces
Port I/O Address Name Uses Remark

COM1 3F8h-3FFh 8-pin serial I/F Connection with a barcode
reader or PC

14-pin serial I/F Connection with an
expansion I/F device

COM2 2F8h-2FFh

IrDA 1.0 Communication with an I/O
Box or between two IT2000s

Can be switched
via the system
library.

COM3 3E8h-3EFh (Modem card) Modem card If a modem card is
used.

COM4 2E8h-2EFh IrDA 1.1 Communication with an I/O
Box or between two IT2000s

Direct control not
possible

COM1
This is a COM port for RS-232C communication. This port can be used after turning on the power to

the 8-pin serial I/F via the system library. The 8-pin serial I/F is located on the side panel of the main

unit.

Pin assignment Pin 1. SD
Pin 2. RD
Pin 3. RS
Pin 4. CS
Pin 5. Vcc
Pin 6. GND
Pin 7. ER
Pin 8. DR

 Fig. 2.10

��

��

�

���

43

COM2
Either the 14-pin serial I/F or IrDA 1.0 can be assigned to this COM2 port depending on the system

library setup. Both the 14-pin serial I/F and IrDA 1.0 can be used as a normal RS-232C interface. By

default, the COM2 channel is not assigned to either device. Therefore, always use the system library

to designate either the 14-pin serial I/F or IrDA, then turn on the power. The 14-pin serial I/F is

located on the rear of the panel.

Pin assignment Pin 1. GND
Pin 2. GND
Pin 3. N.C.
Pin 4. SD
Pin 5. RD
Pin 6. RS
Pin 7. ER
Pin 8. CS
Pin 9. CI
Pin 10. DR
Pin 11. CD
Pin 12. EXTSW
Pin 13. VH
Pin 14. VH

Fig. 2.11

COM3
A modem card, if one is inserted in the PC card slot, can be used as the COM3 port.

(refer to Chapter 2.3.6 “PC Card”.)

COM4
The COM4 port is dedicated for IrDA 1.1. It is used internally by the FLINK Utility. Therefore, it

cannot be directly controlled by application programs.

8

1

9

2

10

3

11

4

12

5

13

6

14

7

44

2.3.6 PC Card

Hardware Overview
Standard Conforms to PCMCIA Release 2.1
Register compatibility Has register compatibility with Intel 82365SL Step
Slot 1 slot TYPE II
Power supply Vcc : 5V (not operable at 3.3V)
Card lock switch Has a card lock switch

Recommended PC Cards
Type Model

SRAM card DT-635MC (256 KB)
DT-636MC (512 KB)
DT-637MC (1 MB)

ATA Flash ROM card DT-9031FMC (2.5 MB)
DT-9032FMC (5 MB)
DT-9033FMC (10 MB)
DT-9034FMC (20 MB)

How to Format SRAM Card and ATA F-ROM Card
To format, call FORMAT.COM in the basic drive (C:). Then, in the DOS prompt screen that

appears, execute the following command to format the SRAM card or ATA F-ROM card.

FORMAT.COM can also be called as a child process.

FORMAT G:

COM Port of Modem Card
COM Port COM3
IRQ 11
I/O Address 3E8h to 3EFh

Notes:

� This port is not applicable for a 3.3V card, CardBus, or a ZV port.

� Neither turn off the power nor remove the card while accessing the card. If this is done, system

operation becomes unstable.

� Before using each type of PC card the PC card driver should be installed by means of the

CONFIG.SYS file. For information about the method used to write CONFIG.SYS refer to

Chapter 4.2 “How to Write CONFIG.SYS and AUTOEXEC.BAT”.

� If the PC card is inserted in the slot and the card is locked, a card recognition sound (buzzer) will

be issued. Since the card is locked, a short period may be required until the recognition sound is

actually issued. Therefore, it is necessary to confirm this recognition sound in advance if

accessing to the card. An error may occur if the card is accessed before the recognition sound is

issued.

45

Card Lock Switch
The IT-2000 has a card lock switch to prevent accidental removal of the card. Any card can be made

usable only after it has been inserted in the slot and the switch has been locked properly. However,

since some types of cards do not allow this card lock switch to be closed, a library routine to disable

this switch is supported. For more information refer to Chapter 8.6.2 "System Library”.

46

2.3.7 Clock Timer

Clock BIOS
00h to 07h of the INT1Ah function is compatible with the IBM PC/AT.

Since INT1Ah can be called in the C language, an alarm operation using the clock can be set with

the system library.

Alarm
If an alarm operation is set using the INT1Ah or system library, it is possible to cause an INT4Ah

interrupt at the specified time to issue the alarm. Normally a buzzer sounds if an INT4Ah occurs,

however, the application program side can hook this interrupt and perform its unique alarm process.

It is also possible to automatically turn on the power at the specified alarm time by means of the

system library (refer to Chapter 8.6.2 “System Library”).

47

2.3.8 Buzzer

This terminal is provided with a buzzer function that is compatible, via an appropriate interface, with

the IBM PC. The application side can sound this buzzer by controlling the I/O port assigned to 61h.

It is also possible to modify the sound frequency by controlling channel 2 of the timer.

For information about the method used to modify the frequency refer to the hardware manual of the

PC/AT compatible machine.

Use of Buzzer From the System
The IT-2000 system uses the buzzer in the following cases:

� At power on (boot).

� If the power is turned off by the Power switch.

� If the PC card is inserted/removed.

� If a key input is accepted (for matrix key and keypad). Enable/disable can be set with the system

 library. (refer to Chapter 8.6.2 “System Library”)

� If the key buffer is full.

� At a low battery voltage (LB1).

� If an alarm interrupt (INT4Ah) occurs.

� When the battery lid is opened while the power is on.

� At a hardware anomaly.

� For calibration and System Menu operation.

Setting Volume of Buzzer
The buzzer volume can be set with System Menu or from the system library.

The volume can be set to one of the four levels: OFF/Small/Medium/Large.

For more information about System Menu and the system library refer to Chapter 3 “System Menu"

and Chapter 8.6.2 “System Library” respectively.

48

2.3.9 Barcode Reader

Overview
The IT-2000 supports the following two Casio OBR (Optical Barcode Reader) models:

DT-9650BCR (Pen scanner)

DT-9656BCR (CCD scanner)

Connect the OBR to the COM1 (8-pin) port of this terminal, and set up the interface as follows.

Synchronization Asynchronous
Baud rate 9600 bps
Data bit 8 bits
Parity bit none
Stop bit 1 bit

For communication between the OBR and this terminal use the OBR library. The various settings

such as an objective readout codes can be set up by transmitting the set up commands from this

terminal to the OBR.

Notes:

� The OBR power is controlled by the OBR library function.

� Before connecting the OBR to this terminal, turn off the main power.

� Every OBR can write the current setup values in the EEPROM built into each OBR.

This ensures that the setup data is retained even when the power is off.

For more information about the OBR library, refer to Chapter 8.6.4 “OBR Library”.

49

2.3.10 Infrared Communication (IR)

The infrared communication function of this terminal supports the protocol of IrDA 1.0

(see note below) and IrDA 1.1 standards. IrDA 1.0 can be used as the COM port for a general

RS-232C. IrDA 1.1 can provide communication at a maximum rate of 4 Mbps by means of

the dedicated utility (FLINK utility).

IrDA 1.0
Item Specification Remark

Synchronization Asynchronous Conforms to IrDA1.0
Baud Rate 115.2 Kbps max.
COM Port COM2

IrDA 1.1
Synchronization Frame synchronization Conforms to IrDA1.1

(see note below)
Baud Rate 4 Mbps max.
COM Port COM4 Cannot be controlled directly

from the application.

Note:

The distance between the two ports must not be more than 60 cm (or 23.6 inches) apart.

50

2.3.11 Keys

Hardware Overview
Key configuration 5 (column) x 3 (row) keys
IRQ IRQ1
Key repeat function available
Simultaneous pressing of multiple keys not available
Roll-over function not available

Key Layout
See the following key layout.

 Fig. 2.12

Fn key
The "Fn" key should be used in combination with the numeric key. Hold down the "Fn" key and

press a numeric key.

Fn -> 0 Function key F10
Fn -> 1 to 6 Function key F1 to F6
Fn -> 7 Backlight on/off
Fn -> 8 Increase the contrast
Fn -> 9 Decrease the contrast

For more information refer to Chapter 6 “Keyboard Controller”.

Fn 7 8 9 -

� 4 5 6 CLR

0 1 2 3

51

2.3.12 Sensors

The IT-2000 has the following three types of built-in sensors:

Illumination
sensor

Attached to the upper section of this terminal and used to sense the ambient
light intensity. It is used for the Auto Backlight Control (ABC) function. It
cannot be controlled directly from the application.

(For more information about the system library refer to Chapter 6 “Keyboard
Controller”.)

Temperature
sensor

Attached to the inside of the main unit and used to detect the ambient
temperature. It is used for Automatic Brightness Adjustment (ABA) of the
liquid crystal display. It cannot be controlled directly from the application.

(For more information about the system library refer to Chapter 6 “Keyboard
Controller”.)

Battery voltage
level sensor

Detects the voltage levels of the main battery, sub-batteries, and card
battery. It is used by the system to take action against low battery voltges. The
system manages low voltage through this battery electric potential sensor.
Applications can acquire the information from this battery voltage level sensor
via the system library or APM BIOS.

(Refer to Chapter 2.2.4 “Battery Voltage Monitoring Process”.)

52

3. System Menu

3.1 Overview

The system menu is a program and used to perform various setups (system clock, contrast of

liquid crystal display, etc.) and implement (downloading) application programs, all of which

are necessary to use this terminal.

To start up the system menu press the reset switch located at the back of the main unit.

When the reset switch is released a short beep will sound and, after a short while, a screen as

shown in Fig. 3.1 will appear.

The calibration (touch panel adjustment) program is initiated first and it must be executed

before entering to the system menu selection stage. If this terminal is used for the first time or

if the touch screen is out of line, adjust the touch panel using this calibration program.

(For information about adjusting the touch panel refer to Chapter 3.9 “Touch Panel Calibration”)

If the “ 1” key is pressed the system menu will be initiated as shown in Fig. 3.2.

 Fig. 3.1 Fig. 3.2

53

3.2 Basic Operation

In the system menu a common set of key operations are used. The following list shows the

keys that can be used in the system menu.

Current Condition Key Operation Operation Process
8 Moves the line selection cursor up one line.
2 Moves the line selection cursor down one line.

CLR Moves the line selection cursor to the upper
menu area, if it is located in the lower menu area.

Line cursor is on

RET Confirms and executes the currently selected
menu item.

0 to 9 Selection of an item or entry of a numeric value.
RET Confirms the currently selected execution item.

Others

CLR Cancels the currently selected execution item.

If "FILE TRANSFER" or "MAINTENANCE" is selected for the first time after the system

menu is initiated, the operator is required to enter a password for system security purposes.

For information about password entry refer to Chapter 3.17 “Password Entry".

3.3 List of Functions

Command Screen Description
Key Click Sound Switch ON or OFF the key click sound.
Buzzer Volume Set volume of buzzer.
LCD Contrast Adjust the brightness of contrast.
Auto Backlight Set the control of auto backlight.
Auto Power OFF Set auto power off.

SYSTEM SETUP

Calibration Adjust the calibration on touch panel.
Ymodem Batch Start up the YMODEM utility.FILE TRANSFER

(requires password) FLINK (IrDA) Start up the FLINK utility.
Set Date/Time Set date and time.
MS-DOS Command Set the command entry mode.
RAM Disk Size Change the size of RAM DISK.
Format Disk Format on user disk.

MAINTENANCE
 (requires password)

Default Setting Start up the system initialization.
EXIT (power off)

For information about each function in the list above refer to the following pages.

54

3.4 Key Click Sound Setup

Function
Sets the key click sound ON and OFF. If it is set to ON, a key click sound is heard when a key

is pressed or when the keypad is touched. It does not sound if it is set to OFF.

Fig. 3.3

Operation
Select ON/OFF with the “ 0” or “ 1 “ key, then confirm the selection with the “RET” key.

Key Operation Function
0 key Sets the key click sound to OFF.
1 key Sets the key click sound to ON.

. (decimal) key Toggles to ON and OFF of the key click sound.
RET key Confirms the current setup and exits the current operation.
CLR key Cancels the setup and exits the current operation.
Others Invalid.

55

3.5 Buzzer Volume Setup

Function
Sets the volume of the buzzer (beep). One of the four levels (OFF/Small/Medium/Large) can

be selected.

 Fig. 3.4

Operation
Make a selection with a key, “ 0” to “ 3 “, and confirm the selection with the “ RET” key.

Key Operation Function
0 to 3 keys Selects the corresponding number.

. (decimal) key Toggles between two selections.
RET key Confirms the currently selected setup and exits this operation.
CLR key Cancels the currently selected setup and exits this operation.
Others Invalid.

56

3.6 Contrast Adjustment

Function
Adjusts the contrast of the liquid crystal display.

 Fig. 3.5

Operation
Press the “8 “ key to increase the contrast or press the “ 2” key to decrease the contrast.

Press the “ RET” key to confirm the setting.

Key Operation Function
8 key Increase the contrast.
2 key Decrease the contrast.

RET key Confirms the currently selected contrast setup and exits this
operation.

CLR key Cancels the currently selected contrast setup.
Others Invalid.

Note:

Depending on whether the parameters are being modified, the CLR key activates differently.

For example, if the CLR key is pressed while a parameter is being changed, that parameter

will be reset to the previous value.

However, if the CLR key is pressed while no parameter is being changed, the setup process will

be aborted and exited at that point.

57

3.7 Auto Backlight Setup

Function
Sets the auto backlight control ON or OFF (refer to Chapter 6 “Keyboard Controller").

 Fig. 3.6

Operation
Select ON/OFF with the “ 0” or “ 1” key, then confirm the selection with the “RET” key.

Key Operation Function
0 key Turns the auto backlight control to OFF.
1 key Sets the auto backlight control to ON.

. (decimal) key Toggles to ON and OFF of the auto backlight control.
RET key Confirms the current setup and exits this operation.
CLR key Cancels the current setup and exits this operation.
Others Invalid.

58

3.8 Auto Power OFF Setup

Function

Sets the time-out period of the auto power off function (APO) (refer to Chapter 2.2.3 “Power OFF

Process"). This time-out period is the interval between when no key entry or no entry on the

touch panel is made and when the power of system is shut off automatically.

 Fig.3.7

Operation
Set the APO time out period with the “ 2” or “ 8 “ key, then confirms the setting with the “ RET”

key.

Key Operation Function
8 key Increase the APO timeout period.
2 key Decrease the APO timeout period. If "DISABLE" appears,

the APO function is disabled.
RET key Confirms the current setup and exits this operation.
CLR key Cancels the current setup and exits this operation.
Others Invalid.

59

3.9 Touch Panel Calibration

Function
Adjusts the calibration of touch panel. If an inconsistency is noted between the target position and

the position actually touched on the touch panel, correct it by performing this calibration adjustment.

 Fig. 3.8

Operation
Adjustment of the calibration :

� First make sure that the arrow points to in the upper left corner of the screen, then touch

the center of this with the stylus provided.

� When the buzzer sounds, release the stylus from the touch panel.

� After the in the upper left corner disappears and the arrow moves to the in the upper

right corner, touch it in the same way.

� Do the same for the s in the lower left and lower right corners.

� When all four s are touched by the stylus, the touch panel calibration is completed.

 If any improper operation has been done, press the “1” key to perform the touch panel

 calibration again.

� If the “2” key is pressed after the four positions have been touched, the calibration

adjustment result takes effect and the menu screen is restored.

If the “ 2 “ key is pressed before finishing on the fourth position, the adjustment process

performed so far will be canceled.

60

Note:

If an mark does not disappear and the arrow does not move to the next position even if the

 mark has been touched by the stylus, an incorrect position was likely touched.

Touch the correct position.

Key Operation Function
1 key Adjusts the touch panel calibration starting from the beginning.
2 key Returns to the menu screen.
Others Invalid

61

3.10 YMODEM Utility

Function
Used to achieve a file transfer via the COM cable.

Communication can be established either between an AT-compatible machine (PC) and an

IT-2000 (main unit), referred to as "PC-to-HT communication". A dedicated 9-pin DSUB-8-pin

cross-type cable (DT-9689AX) is required to connect both the terminals. This utility does not have

functions to allow communication between HT and HT. Use the FLINK function for the HT-to-HT

communication.

 Fig. 3.9

 Fig. 3.10 Fig. 3.11

62

Note:

� When the cable comes off while the communication takes place:

If the connection cable is accidentally unplugged while communication between the IT-2000 and

PC is taking place, a communication error results and communication is interrupted. In this case

the communication software on the PC will display an error message and interrupt

transmission/reception, however, some data may remain in the transmission buffer. If an attempt

is made to restart communication in this condition, the XY utility may receive illegal packets,

hampering normal communication. If this occurs, terminate the communication software on the

PC side then restart it to restore normal communication.

� About time stamping of files:

This utility supports the function to exchange time stamp information between the transmitted file

and received file. The time stamp information to be exchanged will be processed assuming that it

is Greenwich standard time. In contrast, the time used by the IT-2000 is the local time, and the

time stamp of IT-2000 files are accordingly controlled based on the local time.

The XY utility, for file transmission/reception by means of the YMODEM protocol, will convert

a time stamp in Greenwich standard time to a time stamp in local time, or vice versa. This time

conversion is achieved according to the environment variable, TZ. In communication between

two IT-2000 terminals, if, for example, TZ of the transmission side is "JST+5", the time stamp of

a file to be transmitted will have five hours added. In this case the reception side will create a file

by subtracting five hours from the time stamp of the received file.If the environment variable TZ

is not set, this time conversion is not performed.

The time stamp made at XMODEM communication uses the system time of the reception side.

Transmission side Reception side

IT-2000(TZ=none) 12:00 � �0 � 12:00 � �0 � 12:00 IT-2000(TZ=none)
IT-2000(TZ=GMT) 12:00 � �0 � 12:00 � �0 � 12:00 IT-2000(TZ=GMT)
IT-2000(TZ=JST+5) 12:00 � +5 � 17:00 � -5 � 12:00 IT-

2000(TZ=JST+5)
IT-2000(TZ=JST+5) 12:00 � +5 � 17:00 � ? � ??:?? PC
PC 12:00 � ? � ??:?? � -5 � (??-5):?? IT-

2000(TZ=JST+5)

� About key input during communication

Do not press any key during communication, otherwise file transmission/reception may be

hampered.

63

Operations

(1) SEND FILE TO HT (one file transmission from IT-2000 to IT-2000)

This function may be available in future (as of now, not available). It is not allowed to use the

function. If the file transmission between IT-2000s is needed, FLINK utility may be used (refer to

Chapter 3.11 “FLINK Command”.).

(2) SEND FILE TO PC (one file transmission from IT-2000 to PC)

This function is used to copy an optional file from an IT-2000 to PC. To do this, use

commercial terminal emulation software on the PC side. The destination directory of this

copy should be specified by the terminal emulation software on the PC side.

� Connect one end of the serial cable (cross-type) to the 8-pin COM port of the IT-2000 and

connect the other end to the COM port of the PC.

� Select "SEND FILE TO PC" on the transmission side.

� On the PC side initiate the terminal emulation software to prepare for download.

Select a baud rate of 9600 bps, and specify the YMODEM Batch protocol.

� When the file name input screen appears on the IT-2000 side, specify the transmitted file with

its full path name (including the drive name), then press the “RET” key.

� Pressing the “RET” key starts file transfer. When the "Normal End" message is displayed, file

transmission has been completed.

� If the “CLR” key is pressed during file transfer, transfer will be interrupted. It will take about

10 seconds for communication to completely stop.

(3) SEND ALL TO HT (transfer all files in the user drive of IT-2000 to IT-2000)

This function may be available in future (right now, not available). It is not allowed to use the

function. If the file transmission between IT-2000s is needed, FLINK utility may be used (refer to

Chapter 3.11 “FLINK Command”.).

(4) RECEIVE FILES (file reception)

The function is used to receive one file from the PC. On the PC side commercial terminal emulation

software can be used. In this operation the copy destination directory cannot be specified.

� Connect one end of the serial cable (cross-type) to the 8-pin COM port of the IT-2000 and

connect the other end to the COM port of the PC.

� Move the cursor to " RECEIVE FILES ", then press the “ RET” key to prepare for reception.

� Start upload with the terminal emulation software on the PC side.

Select a baud rate of 9600 bps, and specify the YMODEM Batch protocol.

64

� When the "Normal End" message is displayed on the IT-2000 side, file reception has been

completed. For information about the copy destination directory refer to the following table.

� If the “CLR” key is pressed during communication, file reception will be interrupted. It will

take about 10 seconds for communication to completely stop.

The following table shows the possible destination drive/directory for copy purposes.

FROM drive (D:) RAM disk (A:) Copy destination drive/directory
Installed FROM drive (D:)Installed
Not installed FROM drive (D:)

65

3.11 FLINK Command

Function
Files can be transferred by infrared communication (IR). This can be implemented either as PC-to-

HT (AT-compatible machine to IT-2000) communication or as HT-to-HT (between two IT-2000

terminals) communication.

To perform PC-to-HT communication an I/O Box for IT-2000 and a PC-side communication utility

"LMWIN.EXE" is required.

 Fig. 3.13

 Fig. 3.12

 Fig.3.14

66

Note:

If the identical file name exists on the reception side, this command overwrites the existing file.

At this time, the system does not unconditionally overwrite the existing file but creates a temporary

file on the reception-side disk and attempts the overwrite after file transmission has been competed.

This protects file data even if transmission of the file fails.

Therefore, if the identical file name exists on the reception side, the reception-side disk must have a

space large enough for the transmitted file. If there is insufficient space, either delete unnecessary

files in advance on the reception side or use the file delete command (on page 253) to delete them.

Operation

SEND FILE to HT (One file transmission from IT-2000 to IT-2000)

This function is used to copy one file from one IT-2000 to another IT-2000. This file will be copied

to a destination directory that has a name that is identical to the source directory.

� Place the two IT-2000 units so that their IR windows face each other.

� Select "SEND FILE TO HT" at the transmission side.

� Select "REMOTE SERVER" at the reception side to prepare for reception.

� If the file name input screen appears at the transmission side, specify the transmitted file by its

full pathname (including the drive name), then press the “ RET” key.

� Press the ”RET” key to start file transfer. If the "Normal End" message is displayed, file

transmission has been completed.

Note:

If the “CLR” key is pressed during file transfer, transfer will be interrupted. It will take about 10

seconds for communication to completely stop.

SEND ALL to HT (Transfer of all files in the F-ROM drive of IT-2000 to IT-2000)

This function is used to mirror-copy the F-ROM drive. All files existing on the F-ROM drive of the

copy source side are copied to the F-ROM drive of the destination side. Since this process does not

attempt either file deletion or formatting on the copy destination side, it is necessary to confirm in

advance that the F-ROM drive of the destination side has sufficient free space.

� Place the two IT-2000 units so that their IrDA interface windows face each other.

� Select "REMOTE SERVER" on the reception side to prepare for reception.

� On the transmission side move the cursor to "SEND ALL TO HT" and press the “ RET” key.

File transfer begins.

� If the "Normal End" message is displayed, file transmission has been completed.

67

Note:

If the “CLR” key is pressed during file transfer, transfer will be interrupted. It will take about 10

seconds for communication to completely stop.

REMOTE SERVER (remote server mode)

The remote server mode is used by the system which assigns the right of issuing a transmission

request to the partner side and enters the wait state for a request from the partner.

To facilitate communication between two IT-2000 terminals, set the reception side to this mode.

For HT-to-PC communication set the IT-2000 side to this mode and perform the entire operation on

the PC side.

� Move the cursor to "REMOTE SERVER" and press the “ RET” key.

� If the "Hit Any Key!" message appears, file transmission has been completed.

Note:

If the “CLR” key is pressed during file transfer, transfer will be interrupted. It will take about 10

seconds for communication to completely stop.

About communication with PC

To achieve communication between a PC and IT-2000 it is necessary to prepare an I/O Box for

IT-2000 and PC-side communication utility "LMWIN.EXE (Windows version)". The following

procedure shows the steps required for communication with a PC.

� Connect the I/O Box and PC using a communication cable. Turn on the power of I/O Box.

� Mount the IT-2000 on the I/O Box.

� Select "REMOTE SERVER" on the IT-2000 side to enter the wait state.

� On the PC side initiate the PC-side communication utility, LMWIN.EXE.

� Operate the PC-side communication utility to perform reception or transmission. For information

about the operation of the PC-side communication utility refer to the "IT-2000 Upload/Download

Utility Manual" available separately.

� If the "Hit Any Key!" message appears on the IT-2000 side, file transmission has been

completed.

Note:

If the “CLR” key is pressed during file transfer, the transfer will be interrupted. It will take about 10

seconds for communication to completely stop.

68

3.12 System Date/Time Setup

Function
This is used to set (modify) the date and time of the built-in timer in the IT-2000 unit.

 Fig. 3.15

Operation
Enter in the following order: year -> month -> day -> hour -> minute. Press a numeric key and the

corresponding number will appear in the cursor position. Press the “ RET” key to advance to the

next setting. If the “RET” key is pressed without making a numeric entry, the cursor will advance to

the next setting without affecting the previous value. If the “ RET” key is pressed when the cursor is

positioned on the minute setting, the current setup is confirmed.

Note that the seconds can not be specifically set. When the date and time is modified, the seconds

will be set to 0. The year can be set to between 1980 and 2099. If the entered value includes an

invalid number, the setup operation will result in an error when the entire entry has been completed.

If this occurs, reenter from the beginning.

Key Operation Function
0 to 9 keys Enters the corresponding digit in the cursor position.
RET key Moves to the next input item. When the cursor is in the minute

setting, the current setup is confirmed.
CLR key Cancels the currently selected setting and exits this operation.
Others Invalid.

Operations on the touch panel are not permitted.

69

3.13 Command Prompt

Function
This is the MS DOS command prompt screen. An appropriate DOS command can be inputted

through the keypad.

This DOS command prompt is the result of calling COMMAND.COM as a child process from the

system menu. Consequently, if the EXIT command is entered, operation returns to the system menu.

 Fig. 3.16

70

3.14 RAM Disk Size Change

Function
This screen is used to set the RAM DISK size (capacity). The setting will become valid after the

system has rebooted.

 Fig. 3.17

Operation
Setting up the RAM disk

� Adjust the RAM disk size with the “8” and “2” keys.

� Confirm the setup with the “ RET” key.

� When the "Hit Any Key... " message is displayed, press any key other than the “Fn” key.

� The IT-2000 is turned off. After making sure that it turns off, press the reset switch on the

IT-2000 again.

� After the IT-2000 is turned on again, the format confirmation screen, as shown below, will be

displayed during system start-up. Then press the “1” key. This properly formats the RAM disk.

After formatting the RAM disk is usable.

 RamDisk is broken.

 Format? YES:1/NO:0

71

Key Operation Function
8 key Increases the RAM disk size.
2 key Decreases the RAM disk size.

RET key Confirms the currently selected RAM disk size and exits this
operation.

CLR key Cancels the currently selected RAM disk size.
1 key Formats the RAM disk (Format confirmation screen).
0 key Aborts formatting of the RAM disk.
Others Invalid.

Operations with the touch panel are not permitted.

72

3.15 Disk Format

Function
Formats the RAM disk and F-ROM drive.

 Fig. 3.18

Operation
In the screen shown above, use the “2” or “8” key to select whether the RAM disk or user drive is to

be formatted, then press the “RET” key. This makes the following screen appear. In this screen press

the “1” key to move the cursor onto "YES" and press the “RET” key to start formatting. If either the

“RET” key is pressed while the cursor is on “NO”, or “CLR” key is pressed while the cursor is on

“YES”, the formatting operation will be canceled.

Fig. 3.19 Fig. 3.20

73

Key Operation Function
2 or 8 key Selects the objective item (drive selection screen).

0 key Does not perform formatting (formatting start screen).
1 key Starts formatting (formatting start screen).

. (decimal) key Toggles YES and NO options of formatting.
RET key Confirms the current setting.
CLR key Cancels the current setting.
Others Invalid.

74

3.16 System Initialization

Function
Sets all the system setups to their default settings.

 Fig. 3.21

Operation
The following table shows the available key operations.

Key Operation Function
0 key Does not initialize the system.
1 key Initializes the system.

. (decimal) key Toggles YES and NO options of initialization.
RET key Confirms the current setting.
CLR key Cancels the current setting and exits this operation.
Others Invalid.

75

3.17 Password Entry

Function

When "FILE TRANSFER" or "MAINTENANCE" is selected for the first time after the system

menu is initiated, the operator is requested to enter a password.

 Fig. 3.22

Operation
With the keypad enter "system" (lowercase letter), then press the “RET” key. If the “CLR” key is

pressed without entering a character, the password entry operation will be canceled. If the “CLR”

key is pressed with characters having been entered, the characters entered so far will be canceled,

and the password entry operation must be performed again.

This password will, if it is accepted once, be valid and will not have to be entered again unless the

system menu is re-started.

Key Function
RET key Confirms the entry.
CLR key Either clears or cancels the entered characters.
Others Inputted as a character comprising the password.

Touch Panel Function
BS key Clears one character entered.

Arrow key
INS key
DEL key
SP key

Invalid.

Others Inputted as a character comprising the password.

76

4. MS-DOS

4.1 Overview

In general, if a personal computer is booted-up with a floppy disk in the drive, first an attempt will

be made to read MS-DOS from the floppy disk, and if a copy of MS-DOS does not reside on the

floppy it is loaded from the hard disk (C:).

However, this method cannot be used on this terminal since its basic drive (C:), which corresponds

to the hard disk of a PC, is defined as a read-only device. The MS-DOS on the boot drive (C:) can

be loaded initially provided that no PC card is inserted in the slot, but, in this case, it is not possible

to add the start-up code for user programs to the AUTOEXEC.BAT file. This problem is solved on

the terminal as follows.

� At boot-up this terminal searches each drive to locate the CONFIG.SYS and AUTOEXEC.BAT

files and sets it as the current drive, then MS-DOS is loaded into the main memory. As a result,

the CONFIG.SYS and AUTOEXEC.BAT files in the current drive can be processed through

MS-DOS.

� The CONFIG.SYS and AUTOEXEC.BAT files will be searched in the following order:

PC card drive -> RAM disk -> F-ROM drive -> Basic drive

� The CONFIG.SYS and AUTOEXEC.BAT files on the basic drive will be executed only if the

RESET switch is pressed. As a result, the System Menu, which is the maintenance program for

this terminal, will be initiated.

Since the main part of MS-DOS is always loaded from the basic drive (C:) in this case, it is not

necessary to install MS-DOS and COMMAND.COM on the user drive.

 Fig. 4.1

YES NO

LOADING MS-DOS

RESET BUTTON
was pressed?

Specifies the drive on which CONFIG.SYS and
AUTOEXEC.BAT reside as the current drive.

Specifies the basic drive as the current
drive.

Load MS-DOS.

Executes CONFIG.SYS and

AUTOEXEC.BAT in the current drive.

77

As described above, if the system power is turned on without an application installed (i.e. the

conditions just after purchase), the CONFIG.SYS and AUTOEXEC.BAT files locating on the basic

drive will be executed automatically. This inevitably initiates the System Menu (maintenance

program). Therefore, if not only CONFIG.SYS and AUTOEXEC.BAT, but also an application

program are installed on the user drive, it is possible for the application program to be automatically

initiated from the user drive.

Example 1

In the following example MS-DOS is loaded from the RAM disk which has been designated as the

current drive, since the system finds the CONFIG.SYS and AUTOEXEC.BAT first in the RAM

disk.

 Fig. 4.2

Example 2

In the following example the RAM disk contains only CONFIG.SYS. As a result, MS-DOS is

loaded from the F-ROM drive designated as the current drive.

 Fig. 4.3

Example 3

The following example shows a case where there is no F-ROM drive. The search order is also the

same in this case. However in this case, CONFIG.SYS and AUTOEXEC.BAT in the basic drive

will be executed, and System Menu will be initiated.

 Fig. 4.4

NO CARD

ATA CARD

CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

F-ROM

CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

Basic Drive

CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

RAM DISK

NO CARD

ATA CARD

CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

F-ROM

CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

Basic Drive

CONFIG.SYS
APPLICATION

RAM DISK

NO CARD CONFIG.SYS
AUTOEXEC.BAT

APPLICATION

CONFIG.SYS
APPLICATION

78

4.2 How to Write CONFIG.SYS and AUTOEXEC.BAT

This section explains how to write the CONFIG.SYS and AUTOEXEC.BAT files mentioned in the

previous section. A basic explanation of the CONFIG.SYS and AUTOEXEC.BAT is not given here.

For further information about these files refer to the MS-DOS manual or appropriate technical

documents. Observe the following notes when writing a CONFIG.SYS file.

� The System Driver (SYSDRV.SYS) is required to operate this terminal. Always include a line

through which to load the System Driver in the CONFIG.SYS.

� As described above, MS-DOS, which is in the basic drive, is always loaded. Consequently,

C:�COMMAND.COM is used as the command interpreter. Therefore, set a path to

COMMAND.COM to be reloaded in CONFIG.SYS using the SHELL command.

� Within CONFIG.SYS the MENU command can be used. Note however, that no power off

command is included in the MENU selection screen. This is to prevent the power from being

accidentally turned off while loading the drivers. The Power switch is also disabled until the

CASIOAPM.COM program is initiated from AUTOEXEC.BAT, etc. In other words, the MENU

command should only be used in the application program development processes.

Example of CONFIG.SYS
The following example shows a typical CONFIG.SYS file script. Since this example assumes that

the system is booted from either the RAM disk or NAND F-ROM drive, it is necessary to partially

modify it if booting up from the ATA card.

For information about booting from the ATA card refer to Chapter 4.3 "Card Boot".

1 FILES=30 Not required

2 BUFFERS=20 Not required

3 DOS=HIGH, NOUMB Required (1)

4 DEVICE=C:�SYSDRV.SYS Required (2)

5 DEVICE=C:�HIMEM.SYS /M:2 Required (3)

6 DEVICE=C:�POWER.EXE Required (4)

7 DEVICE=C:�TIME.SYS Required (4)

8 DEVICE=C:�EMM386.EXE FRAME=C800 X=C000-C7FF X=D800-DFFF I=C800-D7FF Required (5)

9 SHELL=C:�COMMAND.COM C:� /P /E:1024 Required

10 DEVICE=C:�CARDSOFT�SS365SL.EXE /SKT=1 Required (6)

11 DEVICE=C:�CARDSOFT�CS.EXE /POLL:1 Required (6)

12 DEVICE=C:�CARDSOFT�CSALLOC.EXE Required (6)

13 DEVICE=C:�CARDSOFT�ATADRV.EXE /S:1 Required (6)

14 DEVICE=C:�CARDSOFT�MTSRAM.EXE Required (6)

15 DEVICE=C:�CARDSOFT�MTDDRV.EXE Required (6)

16 DEVICE-C: �CARDSOFT�MTDAPM.SYS Required (6)

17 DEVICE=C:�CARDSOFT�CARDID.EXE Required (6)

18 INSTALL=C: �CARDSOFT�CS_APM.EXE Required (6)

79

�����

(1) DOS=HIGH,NOUMB

This specifies that the main part of DOS is to be loaded in the HMA and, consequently, the

UMB (Upper Memory Block) is not used. This terminal does not support a memory space for

UMB if the EMS memory is to be used. Therefore, always specify NOUMB when using the

EMS.

(2) DEVICE=C:�SYSDRV.SYS

This driver is required to operate this terminal. Always install it before all other drivers.

(3) DEVICE=C:�HIMEM.SYS /M:2

Never fail to specify the "/M:2" option.

(4) DEVICE=C:�POWER.EXE

DEVICE=C:�TIME.SYS

This driver is required to enable the APM function. TIME.SYS must follow immediately after

POWER.EXE.

(5) DEVICE=C:�EMM386. EXE FRAME=C800 X=C000-C7FF X=D800-DFFF I=C800-D7FF

Always specify the above options if using the EMS. Options other than the X option can be

eliminated if the EMS is not used.

(6) DEVICE=C:�CARDSOFT�SS365SL.EXE /SKT=1

DEVICE=C:�CARDSOFT�CS.EXE /POLL:1

DEVICE=C:�CARDSOFT�CSALLOC.EXE

DEVICE=C:�CARDSOFT�ATADRV.EXE /S:1

DEVICE=C:�CARDSOFT�MTSRAM.EXE

DEVICE=C:�CARDSOFT�MTDDRV.EXE

DEVICE=C:�CARDSOFT�MTDAPM.SYS

DEVICE=C:�CARDSOFT�CARDID.EXE

INSTALL=C: �CARDSOFT�CS_APM.EXE

This driver is required if the PC card driver is used. However, if the SRAM card is not used, the

lines following ATADRV.EXE can be modified as follows. This saves a memory space as large as

that used for the SRAM card driver. For more information refer to Appendix B "PC Card Driver".

DEVICE=C:�CARDSOFT�ATADRV.EXE /D:1

DEVICE=C:�CARDSOFT�MTDAPM.SYS

DEVICE=C:�CARDSOFT�CARDID.EXE

INSTALL=C: �CARDSOFT�CS_APM.EXE

80

Example of AUTOEXEC.BAT
The following example shows a typical AUTOEXEC.BAT script. Since this example assumes that

the system is booted from either the RAM disk or the NAND F-ROM drive, it is necessary to

partially modify it if booting up from the ATA card.

For information about booting from the ATA card refer to Chapter 4.3 "Card Boot".

1: C:�ENDATA Required (1)

2: C:�CASIOAPM Required (2)

3: (Environment variables setup and application call, etc.) Optional

Note:

(1) C:�ENDATA

Disables the card boot function in the BIOS. For more information refer to Chapter 4.3, "Card

Boot".

(2) C:�CASIOAPM

Enables the touch panel and power switch operations. The touch panel and power switch

operations cannot be used until this program has been executed. This program only needs to be

called once when booting the system.

81

4.3 Card Boot

Basically the "card boot" operation boots MS-DOS from the ATA card, just like it is booted from a

floppy disk. For this terminal the boot operation looks the same as this case. However, this terminal

uses a boot process greatly different from a general card boot so that the MS-DOS in the drive C is

always loaded, in such a way that MS-DOS not residing in the card is booted.

Usually, in order to access the ATA card, a specific card driver is required. This card driver should

be registered as an MS-DOS block device for the MS-DOS and added as a new drive to the system.

Then the user can read from and write to the disk via the added drive by this device driver.

 Fig. 4.5

However, in order to achieve a card boot, readout from the ATA card must be enabled before

MS-DOS is loaded into the main memory. To solve this conflict the terminal has a function in its

BIOS that can directly read the data from the ATA card. This function is assigned to the drive F (

drive E for models without an F-ROM) and the ATA card looks, from MS-DOS, like a physical

drive. As a result, when BIOS recognizes the presence of an ATA card during the boot process,

it will search for CONFIG.SYS and AUTOEXEC.BAT in the ATA card prior to loading MS-DOS.

If these files are found, the BIOS will load MS-DOS into main memory and shift control to

MS-DOS after designating the drive F as the current drive. Subsequently, MS-DOS will execute the

CONFIG.SYS and AUTOEXEC.BAT files in the current drive (drive F). This completes the load

process.

The mechanism determining which drive is specified as the one to be used by an application that

accesses the card is explained below. The drive G (drive F for models without F-ROM), which is a

drive specifically reserved for applications, will be enabled by CARDID.EXE which is loaded into

the main memory. It is loaded when CARDID.EXE is loaded and when both the drive F and drive G

are being enabled. If this is the case, note that if an attempt is made to access the drive F,

�

�

�

BIOS

G

CARD
Driver

ATA CARD

Physical
Drive

MS-DOS Application

82

the drive G, which is currently enabled, will be disabled.

This problem arises from the fact that the hardware conditions established by initialization with

CARDID.EXE are lost since access to the drive F was executed by means of specific codes

included in the BIOS. To avoid this problem, these specific codes in BIOS should be disabled.

ENDATA.COM is used to do this. If ENDATA.COM is executed with the two drives mentioned

above enabled, the specific codes (program) in BIOS are disabled, and the drive G can be retained

as the only valid card drive. Below are example CONFIG.SYS and AUTOEXEC.BAT scripts

used to boot a card.

Example of CONFIG.SYS
FILES=30

BUFFERS=20

DOS=HIGH,NOUMB

DEVICE=C:�SYSDRV.SYS

DEVICE=C:�HIMEM.SYS /M:2

DEVICE=C:�POWER.EXE

DEVICE=C:�TIME.SYS

DEVICE=C:�EMM386.EXE FRAME=C800 X=C000-C7FF X=D800-DFFF I=C800-D7FF

SHELL=C:�COMMAND.COM C:� /P /E:1024

DEVICE=C:�CARDSOFT�SS365SL.EXE /SKT=1

DEVICE=C:�CARDSOFT�CS.EXE /POLL:1

DEVICE=C:�CARDSOFT�CSALLOC.EXE

DEVICE=C:�CARDSOFT�ATADRV.EXE /S:1

DEVICE=C:�CARDSOFT�MTSRAM.EXE

DEVICE=C:�CARDSOFT�MTDDRV.EXE

DEVICE=C:�CARDSOFT�MTDAPM.SYS

Example of AUTOEXEC.BAT
@ECHO OFF

C:

CD �

C:�CARDSOFT�CARDID.EXE

C:�ENDATA.COM

C:�CARDSOFT�CS_APM.EXE

PROMPT pg

PATH C:�

C:�CASIOAPM.COM

For the moment concentrate on the positions of CARDID.EXE and ENDATA.COM. CARDID.EXE

can be registered as a device driver. In fact, this CARDID.EXE is registered as a device driver in

83

CONFIG.SYS which resides on the drive C. However, CARDID.EXE cannot be registered as a

device driver at a card boot. If this CARDID.EXE is registered as a device driver, two drives may

be enabled concurrently if MS-DOS executes CONFIG.SYS. In addition, if ENDATA.COM is

called with the INSTALL command, the drive G is enabled exclusively. However, since MS-DOS is

operating under the assumption that the drive F is the current drive, an access error with the drive F,

which does not actually exist, occurs because the AUTOEXEC.BAT file has been opened.

Then how about calling ENDATA.COM from AUTOEXEC.BAT? It is apparent that this is also not

successful. Although two drives are enabled by executing CONFIG.SYS, the drive G having been

enabled by CARDID.EXE is disabled when MS-DOS accesses the drive F to execute the

AUTOEXEC.BAT file.

Next, the problem where a large program cannot be directly initiated from AUTOEXEC.BAT is

explained. The explanation discusses the restrictions that apply to a card boot. This can be the

situation when an attempt is made to read AUTOEXEC.BAT from the drive F while it is being

disabled. COMMAND.COM consists of two independent parts called the resident part and non-

resident part. The non-resident part will be overwritten by a large application program if it is loaded

into the main memory. The resident part checks if the non-resident part has been destroyed at the

termination of an application program, and will, if it is found to have been destroyed, reload the non-

resident part again from the disk. In this case, accessing the drive F would not cause an error since

the COMMAND.COM file to be read at this time was designated by the SHELL command in the

CONFIG.SYS file. However, an error will result when an attempt is made by the reloaded

COMMAND.COM file to open the AUTOEXEC.BAT file in order to continue its process. This

problem can be avoided by shifting control priority from the AUTOEXEC.BAT file to another

appropriate batch file in the drive G.

Example of AUTOEXEC.BAT
@ECHO OFF

C:�CARDSOFT�CARDID.EXE

C:�ENDATA.COM

G:

Other.bat

In the above example the current drive is moved to the drive G, and the Other.bat file in the drive G

is called. Since execution of the Other.bat file is performed under the assumption that the drive G is

the current drive, no problem occurs if an attempt is made to open the same batch file in the course

of reloading the non-resident part. But, it is prohibited to use a CALL statement to invoke the

Other.bat file from AUTOEXEC.BAT. This will cause an error when control is returned to the

AUTOEXEC.BAT file.

84

5. MS-Windows

5.1 Overview

The MASK ROM drive (E:) of this terminals has MS-Windows installed in it.

However, MS-Windows cannot be booted directly from this MASK ROM drive. This is because

MS-Windows will overwrite some of the INI files at start up. However, since all files including the

INI files are initially located in the MASK ROM drive, they cannot be overwritten, therefore an

error will result. To avoid this problem, it is necessary to copy some of the files in the write-permit

drive (D:) before booting MS-Windows (refer to the description about WINST.EXE). This

installation method is called “network install” and is employed if multiple users share MS-Windows

on the network. With respect to the MS-Windows operating environment of this terminal (as shown

in Fig. 5.1 below), D:�WINDOWS is considered the disk of a local computer and E:�WINDOWS

is considered the shared directory on the network.

 Fig. 5.1

The advantage of this method is that a limited disk space can be used efficiently by allocating a very

large volume of the main part of MS-Windows, various drivers programs, and INI files to write

setups to the user drive while referencing the inside of the MASK ROM.

 WIN.COM

 Various INI files

 Other

 MS-Windows

 Device drivers

 etc.Referencing the path

D:�WINDOWS E:�WINDOWS

IT-2000

85

5.2 Installation of MS-Windows

As explained on the previous page, it is necessary to move (copy) some files onto the write-permit

drive before booting MS-Windows. This section will describe this copy operation The following is

an example of manually installing necessary files so that the user can determine the contents.

A utility program (WINST.EXE) can be used to reduce the work load.

For more information about this installation utility refer to Chapter 9.10 "Windows Installation

Utility".

5.2.1 Demonstration Installation

For this terminal it is recommended to initiate the application program at the same time

MS-Windows is started. The program manager can also be initiated during the development of

application programs or for the purpose of demonstration. To initiate the program manager for the

above purpose use the following procedure:

� Create the D:�WINDOWS directory.

� Copy the entire content of E:�WINDOWS�LOCAL onto the created directory.

The following files are to be copied:

WIN.COM WIN.INI
WIN.CLN WFWSYS.CFG
SYSTEM.INI MOUSE.INI
PROGMAN.INI SERIALNO.INI
CONTROL.INI MAIN.GRP
ACCESSOR.GRP STARTUP.GRP
WINVER.EXE SYSTEM.CLN
SHARES.PWL

� Create the CONFIG.SYS and AUTOEXEC.BAT files. Remember to add "D:�WINDOWS;

E:�WINDOWS" to the existing path. Then specify “win.com” to boot MS-Windows at the end

of the AUTOEXEC.BAT file.

� Copy the created CONFIG.SYS and AUTOEXEC.BAT files onto D:�.

The above procedures complete the demonstration installation of MS-Windows. MS-Windows will

be automatically booted if the terminal is re-started by pressing the RESET switch.

86

Note:

The contents of the latest version of E:�WINDOWS�LOCAL may be released as SDK. If this is

the case, use the files in SDK instead of those stored in E:�WINDOWS�LOCAL.

5.2.2 Application Installation

For this terminal it is recommended to initiate the application program at the same time

MS-Windows is started. This can be achieved by modifying the shell line included in the “boot”

section of system.ini. The default setup script of this shell line is "shell=progman.exe", which is for

initiating the program manager. If "progman.exe" is replaced by the application program name to be

initiated at boot up, the application program, rather than "progman.exe", will be initiated at the same

time MS-Windows is started.

� Create the D:�WINDOWS directory.

� Copy the entire contents of E:�WINDOWS�LOCAL onto the created directory.

� To edit “system.ini” on a personal computer copy D:�WINDOWS�SYSTEM.INI onto the

ATA or SRAM card.

� Open “system.ini” with the editor and insert the application program name to be initiated in the

shell line of the “boot” section.

� Create the CONFIG.SYS and AUTOEXEC.BAT files. Remember to add "D:�WINDOWS;

E:�WINDOWS" to the existing path. Then specify “win.com” to boot MS-Windows at the end

of the AUTOEXEC.BAT file.

� Copy the created CONFIG.SYS and AUTOEXEC.BAT files onto D:�, and copy the edited

“system.ini” and application program onto D:�WINDOWS.

The above procedures complete application installation of MS-Windows. The application program

will be automatically initiated if the terminal is re-started by pressing the RESET switch.

Note:

The contents of the latest version of E:�WINDOWS�LOCAL may be released as SDK. If this is

the case, use the files in SDK instead of those stored in E:�WINDOWS�LOCAL.

87

6. Keyboard Controller

6.1 Overview

This terminal is equipped with a sub-CPU dedicated to controlling the keyboard, touch panel,

backlight, and various sensors. This chapter describes major tasks assigned to this sub-CPU.

 Fig. 6.1

Main CPU Sub-CPU

Temperature Sensor

Illumination Sensor

Battery Voltage
SensorBuzzer

Volume

El BacklightLCD Brightness

KeyboardTouch Panel

Command

Data

88

6.2 Keyboard Control

The keyboard control of IT-2000 is compatible with the IBM PC/AT. The keyboard controller

senses if a key has been pressed and sends a MAKE or BREAK code to the main CPU.

 Fig. 6.2

System Scanning Code
Each keyboard scanning code generated from the keyboard main unit will be converted to the

keyboard system scanning code through the controller.

MAKE code : Code generated when the corresponding key is pressed.

BREAK code : Code generated when the corresponding key is released.

Primary/Secondary Code
A code generated if an INT09h interrupt occurs will be converted to a primary code and a secondary

code through the BIOS and set in the key buffer. They can be acquired from the application program

by calling INT16h.

Primary code

Basically a character code (refer to the code table on the next page) is assigned to each key,

except that 00h is assigned to function keys (Fn+ 0 to Fn+ 6), which must be recognized together

with a secondary code as a set.

Application Program

Sub-CPU

Function Process

Hardware Interrupt Process
BIOS

Keyboard

System Scanning Code

Primary/Secondary Code

Keyboard
Input Buffer

89

Secondary code

Basically a system scan code is assigned to each key, however, for some keys, different codes

will be assigned depending on the Fn key.

Code Table

The following diagram shows the relationship between the keyboard keys and primary codes.

 Fig. 6.3

Fn key

The Fn key is used to generate a system scanning code for the function key if it is pressed

together with a numeric key. For example, Fn+1 keys generate a system scanning code for the

F1 key, and Fn+0 keys generate a system scan code for the F10 key. However, Fn+7 to 9 keys

will not generate a system scanning code that corresponds to any function keys because they

have already been assigned to the following internal functions to be executed internally.

Operation Function
Fn + 7 Toggles the backlight on and off.
Fn + 8 Increases the LCD screen contrast by one increment.
Fn + 9 Decreases the LCD screen contrast by one increment.

37 38 39 2D

2E 34 35 36 1B

30 31 32 33
Fn 7 8 9 -

� 4 5 6 CLR

0 1 2 3

0D

003E 003F 0040

0044 003B 003C003D

Fn key not pressed

Fn key pressed

90

6.3 Touch Panel Control Function

The keyboard controller has incorporated a program for acquiring the touch coordinates of the touch

panel. This program compensates these acquired coordinates with the values obtained through

calibration so that correct coordinate values can be calculated. The calculated coordinates will be

passed to a ROM-resident program called PEN BIOS when mouse interrupt occurs.

The following diagram shows an operational flow until the coordinates acquired by the keyboard

controller are passed to the application program as a mouse event.

 Fig. 6.4

Touch Panel
Keyboard
Controller ROM BIOS

IRQ12 and P260

PENMOUSE.DRVUser Program

(Coordinate)

Mouse Event

MS-Windows

91

6.4 Sensor Control

This terminal has the following three types of sensors installed to serve as dedicated devices for

handy terminal.

Sensor Purpose of Use
Temperature sensor Detects the temperature inside the main unit. This result will be

used to automatically compensate the LCD brightness.
Illumination sensor Detects the ambient light intensity to automatically turn on and

off the backlight.
This function is called the Auto Backlight Control (ABC)
function, and it can be enabled or disabled with the System
Menu or application programs.

Remaining battery voltage
sensor

Used to acquire the remaining battery voltage. Application
programs can obtain this value via the APM BIOS.

92

6.5 Backlight Control

This terminal has incorporated two types of automatic backlight control functions: ABO (Auto

Backlight OFF) and ABC (Auto Backlight Control). The ABO function is used to turn off the

backlight if no key or touch panel input has been made for a given period of time, and the ABC

function is used to automatically turn on and off the backlight depending on the intensity of the

ambient light. These operations are performed by the keyboard controller.

ABC (Auto Backlight Control)
The ABC function automatically turns on or off the backlight by detecting the ambient light

intensity. Every second it determines the amount of light received by the illumination sensor and

automatically turns on or off the backlight depending on whether the amount of light is less than the

given amount or more than the given amount.

Fig. 6.5

In the above graph, the marginal light amount across which the backlight is turned ON is at a setting

less than if the backlight is OFF. If these two levels are identical, the backlight will flicker if it

detects a small variation in the incident light on the illumination sensor. To avoid this problem an

appropriate hysterisis is provided.

Amount of Light

Dark

Light

Margin to

turn ON

Margin to

turn OFF

Backlight OFF

Backlight ON

93

Transition of Backlight Control Methods
The concept of ABC lies in automating user operations. However, automatic control depends on the

illumination sensor. It cannot be perfect because various types of light, sunlight or room light for

example, may be incident to the sensor. Consequently, this requires manual ON/OFF control even if

under ABC control. This leads to a further problem wherein the user may forget to turn it on or off.

To avoid these problems this system employs the following rules for transition between ABC,

manual operation (ON function/OFF function), and ABO.

Fig. 6.6

ABC Control

ONOFF

OFF function

or ABO time

OFF functionABC ON

ABC OFF

ON function

ABO time or

OFF function

94

Press F7
key

ABO
time-up

ABC
Enable

ABC
Disable

Becomes
dark

Becomes
light

1 ABC
disabled
Backlight
ON state

	 2 	 2 	 3 or 4

*1

--- Ignore Ignore

2 ABC
disabled
Backlight
OFF state

	 1 --- 	 3 or 4

*1

--- Ignore Ignore

3 ABC
enabled
Backlight
ON state

	 6 Ignore Ignore 	 2 --- 	 4

4 ABC
enabled
Backlight
OFF state

	 5 --- Ignore 	 2 	 3 ---

5 ABC
temporaril
y disabled
Backlight
ON state

	 4 	 3

*3

Ignore 	 2 	 3

*4

6 ABC
temporaril
y disabled
Backlight
OFF state

	 3 --- Ignore 	 2 --- 	 4

*4

Note:

*1: The backlight turns ON or OFF depending on the current light intensity.

*2: ABO event does not occur during ABC. However, if the terminal is left in a dark place,

the APO (Auto Power OFF) function will turn off the backlight.

*3: Since the backlight is presently ON, the normal state can be restored by jumping to step “3”.

*4: Cancels the sole condition of "ABC temporarily disabled".

95

7. Drivers

7.1 Overview

The following drivers are supplied for this terminal. Install them as required for operation.

Driver File name Purpose
System driver SYSDRV.SYS Driver required to operate the system. This driver

must be installed.
Clock control driver TIME.SYS Executes the process that restores the clock

condition at a resume-boot in cooperation with
POWER.EXE. This driver must be installed.

Hardware window
manager

HWWMAN.EXE Driver that controls the hardware window. It is
called from the keypad driver.

Keypad driver KEYPAD.EXE Driver that adds the keypad function to the system.
This driver is called from applications via the
keypad library.

PenMouse driver PENMOUSE.DRV Driver to simulate the Microsoft mouse driver
operation on the touch panel.

Virtual keyboard
driver

VKD.386 Driver that enables access to the keyboard
controller. It is installed automatically by the
installer.

System library SYSCALL.DLL This library can be called by application program
or utility which use the library.

Display driver VGA_C.DRV
VGA_NC.DRV

Display driver for Windows that can meet the size
of display, 192 x 384 dots. Two types of the
display driver are available, one to display mouse
cursor and the other not to display the cursor. It is
installed automatically by the installer.

For information about the drivers associated with MS-DOS refer to the MS-DOS reference manual

or other technical reference documents published separately by third party.

96

7.2 System Driver

7.2.1 Function

The system driver (SYSDRV.SYS) must be installed because it executes critical processes in this

terminal. The system driver mainly performs the following processes.

� LB1 monitoring and warning

Monitors the main battery conditions and sounds a warning buzzer if an LB1 event is detected.

It also forcibly turns off the system, if the battery voltage has not recovered within ten minutes of

the buzzer sounding.

� Alarm notification

When alarm (INT4Ah) occurs, the driver will hook the interrupt and ring the buzzer. And, the

driver will notify to the user.

� Adjustment of the number of display lines

On a general VGA screen twenty five lines (if video mode=03h) of text are displayed. However,

on this terminal, it is limited to twenty four lines because of the screen size.

To make display possible the system driver modifies the number of allowable lines to twenty

four. The number of display columns has not been modified.

7.2.2 Startup Method

This driver is loaded by defining the DEVICE statement in the CONFIG.SYS file. SYSDRV.SYS

is stored in the basic drive (C:).

Format

DEVICE=C:�SYSDRV.SYS

Start option

None

Note:

SYSDRV.SYS must be loaded before any device drivers.

97

7.3 Clock Control Driver

7.3.1 Function

This driver adjusts the system time on this terminal. This driver must be installed.

On a general PC a timer interrupt occurs every 55 ms to update the clock tick counter, which is one

of the BIOS system variables, and the clock overflow counter. The clock tick counter is incremented

each time the timer interrupt occurs and read out from the real-time clock (RTC) when the PC power

is turned on, and disappears when the power is off. However, in the case of a handheld terminal,

since the suspend/resume state is frequently cycled, the clock tick counter is initialized only once, at

the initial boot. Therefore, the clock time may be slightly off if the terminal is operated for a long

period of time. To avoid this problem the terminal uses this driver to control the clock in cooperation

with POWER.EXE so that the time can be directly read from the RTC. This ensures that the correct

time can always be obtained, irrespective of the length of operation. However, since the time is read

from the RTC in seconds, the 1/100 of a seconds digit will be ignored if the time is read using

INT21h(2Ch).

The relationship between the clock control driver and application programs is shown in the

following diagram.

 Fig. 7.1

Application Program

Int21h

Int1Ah

MS-DOS

Real Time Clock (RTC)

POWER.EXEClock control driver

98

7.3.2 Startup Method

This driver is loaded by defining the DEVICE statement in the CONFIG.SYS file. TIME.SYS is

stored in the basic drive (C:).

Format

DEVICE=C:�TIME.SYS

Start option

None

Note:

TIME.SYS must be loaded immediately after POWER.EXE.

99

7.4 Keypad Driver/Hardware Window Manager

7.4.1 Function

The keypad driver (KEYPAD.EXE) is used to add the keypad function to the system. Application

programs can use the keypad by calling the keypad driver functions via the keypad library (refer to

Chapter 8.6.3 “Keypad Library”).

This keypad driver internally calls the hardware window manager that enables the use of the

hardware window. Therefore, the use of the keypad driver requires the residence of the hardware

window manager. The keypad driver is also used by some utilities (refer to Chapter 9 “Utility”.)

supported for this terminal. Therefore, before executing an application program or utility that uses

the keypad driver, make it reside in the main memory.

The relationship between the keypad driver/hardware window manager and application programs is

shown by the following diagram.

 Fig. 7.2

Application Program (system menu)

Keypad Driver

Hardware Window Manager

Hardware Windows

PEN BIOS

Touch Panel

100

7.5 PenMouse Driver

7.5.1 Overview

The PenMouse driver (PENMOUSE.DRV) simulates the operation of the mouse driver specific to

the personal computer using inputs received from the touch panel. The PenMouse driver makes it

possible to run an application on the IT-2000 terminal that was designed for use with a mouse driver

on the personal computer.

However, perfect simulation cannot be achieved because of the physical difference between the

mouse and touch panel. For example, no touch panel operation can simulate a right mouse button

click. However, application developers do not have to be particularly concerned with this difference.

This is because a right mouse button click can be recognized as a "Pen UP" state.

The relationship between the PenMouse driver and application programs is shown by the following

diagram.

 Fig. 7.3

Windows

Application Program

PenMouse Driver

PEN BIOS

Touch Panel

101

7.5.2 Startup Method

The PenMouse driver can be loaded by specifying as follow at [boot] section of SYSTEM.INI.

However, it is loaded automatically to F-ROM drive (D:) when Windows is installed by using the

Windows installer. SYSTEM.INI is also created automatically. The driver is supplied as an SDK.

Format:

[boot]

......

mouse.drv=penmouse.drv

Note:

If the above format is deleted from SYSTEM.INI or from PENMOUSE.DRV, the mouse operations

on Windows cannot be performed.

102

7.6 Virtual Keyboard Driver

7.6.1 Function

The Virtual Keyboard Driver (VKD.386) is a driver that enables access to the keyboard controller

on Windows (refer to Chapter 6 "Keyboard Controller"). This driver is only called from the system

library. Since this driver has no chance of being directly called from the application program, the

user does not have to be aware of its existence. Some of the system libraries use the functions of the

keyboard controller. However, Windows applications cannot directly access the hardware.

Therefore, they use this virtual keyboard driver to access the keyboard controller assuming that it is

a virtual machine. The relationship between the virtual keyboard driver and application programs is

shown in the following diagram.

 Fig. 7.4

Application Program

System Library

Virtual Keyboard Driver

Windows

Keyboard Controller

103

7.6.2 Startup Method

The Virtual Keyboard Driver can be loaded by making the following specification in the “386Enh”

section of SYSTEM.INI. VDK.386 is included in SDK. If Windows is installed by the installer,

VDK.386 will be automatically copied into the F-ROM drive (D:) and SYSTEM.INI will also be

automatically created. Therefore, the user does not have to be concerned with this setup process.

Format:

[386Enh]

.....

keyboard=vkd.386

Note:

If the above script is deleted from SYSTEM.INI or if VDK.386 is removed, Windows may not

operate properly.

104

7.7 System Library (main program file)

7.7.1 Function

SYSCALL.DLL is a dynamic link library that constitutes the main program of the system library

(refer to Chapter 8.6.2 "System Library"). Before executing an application that calls the system

library it is necessary to locate this file in the Windows directory (or other directory to which the

path is established). Some of the system libraries use the functions of the keyboard controller.

However, Windows applications cannot directly access the hardware. Therefore, they use the virtual

keyboard driver to access the keyboard controller assuming that it is a virtual machine.

The relationship between the virtual keyboard driver and application programs is shown in the

following diagram.

 Fig. 7.5

7.7.2 Operation Method

Copy the SYSCALL.DLL file into the directory to which the path is established. The setup file does

not need to be modified at all. If Windows is installed by the installer, SYSCALL.DLL will be

automatically copied into the "D:�WINDOWS" directory.

For information about the method used to call SYSCALL.DLL from applications refer to Chapter

8.6.2 "System Library".

Application Program

System Library

Virtual Keyboard Driver

Windows

BIOS and HardwareKeyboard Controller

105

7.8 Display Driver

7.8.1 Function

Display driver (VGA_C.DRV, VGA_NC.DRV) is a Windows display driver for a screen size of

192 x 384 dots. If this driver is used, maximized or iconized windows will not extend beyond the

screen size and dialog boxes can be displayed in the center of the screen.

The relationship between the Display driver and application programs is shown in the following

diagram.

 Fig. 7.6

There are two types of display driver for various display modes.

VGA_C.DRV Displays a mouse cursor.
VGA_NC.DRV Does not display a mouse cursor.

7.8.2 Startup Method

Display Driver can be loaded by making the following specification in the [boot] section of

SYSTEM.INI. VGA_C.DRV or VGA_NC.DRV are included in SDK. If Windows is installed by

the installer, VGA_C.DRV will be automatically copied into the F-ROM drive (D:) and

SYSTEM.INI is also automatically created. Therefore, the user does not have to be concerned with

this setup process.

Format:

[boot]

....

display.drv=vga_c.drv or display.drv=vga_nc.drv

Application Program

Display DriverWindows

VGA Controller

LCD Display

106

Note:

If the above script is deleted from SYSTEM.INI or PENMOUSE.DRV is removed, no display

operation is permitted on Windows.

107

7.9 COM Driver for IrDA

7.9.1 Overview

The IrDA Driver consists of IRDA.DLL and IRCOMM.DRV. The former is processes the protocol

section and the latter processes the port emulation and frame sections.

It is possible to set up parameters to define the operation of the IrDA section by writing them in the

WIN.INI file.

 Fig. 7.7

This IrDA Driver supports three connection methods: 3-Wire Raw, 3-Wire, and 9-Wire.

Frame Layer
The frame layer is defined by the installed hardware (H/W). IrDA-SIR (Infrared Data Association-

Serial Infrared Interface) conforms to UART 16550, and IrDA-FIR (Infrared Data Association-First

Infrared Interface) uses the CASIO gate array with NEC CB-C8VM NAFIRL.

IrLAP/IrLMP Layer
The IrLAP (Infrared Link Access Protocol) layer supports only one connection link, and IrLMP

(Infrared Link Management Protocol) layer can support a maximum of three connection links. (In

practice, only one connection link is for users, since IAS of the IrCOMM Layer uses two connection

links.)

Application

Windows API

Port Emulation Layer

IrCOMM Layer

IrLAP/IrLMP Layer

Frame Layer

SIR FIR

TTP Layer

IRCOMM.DRV

IRDA.DRV

IRCOMM.DRV

108

IrCOMM Layer (including TinyTP Layer)
The IrCOMM (Infrared COMM) layer includes TinyTP (Tiny Transport Protocol) layer. IrDA

protocol can be used through this IrCOMM (TinyTP) layer. Three connection methods are

supported: 3-Wire Raw, 3-Wire, and 9-Wire. The credit size of TinyTP is fixed to five (and it cannot

be modified).

3-Wire Raw Can only perform transmission/reception of user data.
3-Wire Includes RS-232C setup, communication error, and break signal handling functions

in addition to being able to perform transmission/reception of user data.
9-Wire Includes both the 3-Wire functions and signal line control functions. Signal lines

will be emulated as follows:

 Fig. 7.8

IAS will respond with the following data:

Parameters 0x00, 0x01, Wire type // This wire type can be set by WIN.INI.
0x01, 0x01, 0x01 // Port type

IrDA:IrLMP:LsapSel 0x02
IrDA:TinyTP:LsapSel 0x03

DTR

DSR

DCD

RI

RTS

CTS

DTR

RTS

IrDA connection partner IrDA driver in IT-2000

109

7.9.2 Windo ws 3.1 Communication Functions

To perform communication with IrDA use API of MS-Windows. The following table lists the

specifications of the available communication functions.

List of communication functions
Function Description Page

BuildCommDCB Sets the control codes to the device control block (DCB). 110
ClearCommBreak Clears the break state of the communication device. 111
CloseComm Transmits the current contents of the buffer, then closes the

communication device.
112

EnableCommNotification Permits or prohibits the posting of WM_COMMNOTIFY to
the window.

113

EscapeCommFunction Orders the device to execute the expanded functions. 115
FlushComm Transmits characters from the communication device. 116
GetCommError Reads the communication status into the buffer. 117
GetCommEventMask Acquires the event mask, then clears it. 120
OpenComm Opens the communication device. 121
GetCommState Reads the device control block into the buffer. 123
ReadComm Reads data from the communication device into the buffer. 124
SetCommBreak Sets the communication device to the break state. 125
SetCommEventMask Acquires the event mask from the communication device, then

sets the event mask.
126

SetCommState Sets the communication device to the state specified by the
device control block.

128

TransmitCommChar Place the specified character at the head of the transmission
queue.

132

UngetCommChar Designates a character to be read next. 133
WriteComm Reads data from the buffer and writes it to the communication

device.
134

110

BuildCommDCB

int BuildCommDCB(lpszDef, lpdcb)

LPCSTR lpszDef; /* Address of the device control character string */

DCB FAR *lpdcb; /* Address of the device control block */

The BuildCommDCB function converts the device definition character string to the corresponding

serial device control block (DCB) codes.

< Parameter >

lpszDef : Pointer to a character string that specifies the device control information and ends with a

NULL character. This character string must have the same format as the parameters used

for MS-DOS commands.

lpdcb : Pointer to the DCB structure that receives the converted character string. This structure

defines the control setups to be sent to the serial communication device.

< Return value >

Returns zero if the function is terminated normally. Otherwise it returns -1.

Note:

The BuildCommDCB function simply stores a value in the buffer. The application program side

should set the value on the port using the SetCommState function. By default this BuildCommDCB

function is set so that XON/XOFF and hardware flow controls are disabled. To enable these flow

controls use the application to make the appropriate setting in the DCB structure.

Note on IrDA:

No special restriction on use of the function.

111

ClearCommBreak

int ClearCommBreak (idComDev)

int idComDev; /* Device with canceled break state */

The ClearCommBreak function cancels the break state of the communication device and restores it

so it is ready for character transmission.

< Parameter >

idComDev: Identifies the communication device for which the break state is to be canceled.

The OpenComm function will return this value.

< Return value >

Returns zero if the function is terminated normally. If an valid device was not identified by

idComDev parameter, -1 is returned.

Note:

The function cancels the break state of the communication device that was set with the

SetCommState function.

Note on IrDA:

This will only function if the 9-Wire or 3-Wire connection is established. It will not function for

3-Wire RAW connection. If this is attempted, the ClearCommBreak function will be terminated

normally.

112

CloseComm

int CloseComm(idComDev)

int idComDev; /* Device to be closed */

The CloseComm function will close the specified communication device and release the memory

area assigned to the transmission and reception queues of the device. All characters in the

transmission queue will be flushed out before the communication device is closed.

< Parameter >

idComDev : Specifies the device to be closed. The OpenComm function returns this value.

< Return value >

Returns zero if the function is terminated normally. Otherwise it returns a value less than zero.

Note on IrDA:

The CloseComm function performs disconnection of the IrDA protocol. It takes between a few

seconds and 20 to 30 seconds before communication is actually disconnected. This disconnection

time varies depending on the connection partner, threshold time, number of transmitted data pieces

in the user-defined transmission queue and reception queue, and number of transmitted data pieces

in the transmission buffer and reception buffer in the IrDA driver. If the number of transmitted data

pieces in the transmission queue and transmission buffer is equal to or greater than one, that data will

be transmitted. If the number of data pieces reaches zero, this function will be terminated normally.

However, if the number of data pieces in the transmission queue and transmission buffer does not

reach zero within a given period of time, this function will be terminated normally after it clears the

transmission queue and transmission buffer. In other cases where the reception queue and reception

buffer contains at least one character of data, this function will be terminated normally after it erases

them. Since this CloseComm function does not perform OFF control of the IrDA power, it should be

separately handled by the user.

113

EnableCommNotification

BOOL EnableCommNotification(idComDev, hwnd, cbWriteNotify, cbOutQueue)

int idComDev; /* Communication device identifier */

int hwnd; /* Handle of window that receives the message */

int cbWriteNotify; /* Number of bytes written before notification */

int cbOutQueue; /* Minimum number of bytes of the output queue */

EnableCommNotification will enable or disable the posting of the WM_COMMNOTIFY message

to the specified window.

< Parameter >
idComDev Specifies the communication device that posts the notification message to the

window identified by the hwnd parameter.
The OpenComm function returns this idComDev parameter value.

hwnd Identifies the window to which the posting of WM_COMMNOTIFY message
is enabled or disabled. If this parameter is NULL, EnableCommNotification
will disable the posting of the message to the current window.

cbWriteNotify Specifies the number of bytes to be written in the input queue of the application
with the COM driver before the notification message is transmitted.
A message requesting it to read the information from the input queue will be
sent to the application.

cbOutQueue Specifies the minimum number of bytes of the output queue. If the number of
bytes in the output queue is less than this value, the COM driver will send a
message to the application requesting it to write the information in the output
queue.

< Return value >

Returns a value other than zero if the function is terminated normally. Otherwise it returns zero to

indicate that an invalid COM port identifier was specified, the port is not opened, or a function that

is not supported by RSCOMM.DRV was specified.

114

Note:

If the application specifies -1 for the cbWriteNotify parameter, the WM_COMMNOTIFY message

will be sent to the specified window in the case of CV_EVENT notification or CN_TRANSMIT

notification, but it will not be sent in the case of CN_RECEIVE notification. If the application

specifies -1 for the cbOutQueue parameter, CV_EVENT notification or CN_RECEIVE notification

will be made, but CN_TRANSMIT notification will not be made. It a time-out occurs before the

number of bytes specified by the cbWriteNotify parameter is written in the input queue, a

WM_COMMNOTIFY message with a set CN_RECEIVE flag will be sent. In this case, the next

message will not be sent until the number of bytes in the input queue is less than the value specified

by the cbWriteNotify parameter. Similarly, a WM_COMMNOTIFY message with a set

CN_RECEIVE flag will be sent only if the data size of the output queue is greater than the number

of bytes specified by the cbOutQueue parameter.

Note on IrDA:

There is no particular restriction on use.

115

EscapeCommFunction

LONG EscapeCommFunction(idComDev, nFunction)

int idComDev; /* Identifier of the communication device */

int nFunction; /* Code of the expanded function */

The EscapeCommFunction is used to specify the communication device used to execute the

expanded function.

< Parameter >
idComDev Specifies the communication device used to execute the expanded function.

The OpenComm function returns this value.
nFunction Specifies the function code of the expanded function. It will be one of the following:

CLRDTR Clears the DTR (data terminal ready) signal. This will function if
a 9-Wire connection is established.

CLRRTS Clears the RTS (request to send) signal. This will function if a
9-Wire connection is established.

GETMAXCOM Returns the maximum value of the COM port identifier supported
by the system. This value ranges between 0x00 and 0x7F. 0x00
corresponds to COM1, 0x01 corresponds to COM2, and 0x02
corresponds to COM3, and so on.

GETMAXLPT Not supported.

RESETDEV Not supported.

SETDTR Sends a DTR (data terminal ready) signal. This will function if a
9-Wire connection is established.

SETRTS Sends an RTS (request to send) signal. This will function if a
9-Wire connection is established.

SETXOFF Not supported.

SETXON Not supported.

< Return value >

Returns zero if the function is terminated normally. Otherwise it returns a value less than zero.

Note on IrDA:

Some nFunction parameters are not supported at present. Those which are currently supported will

function if a 9-Wire connection is established. They will not function for a 3-Wire or 3-Wire-Raw

connection. If these parameters are specified, the EscapeCommFunction function will be terminated

normally.

116

FlushComm

int FlushComm(idComDev, fnQueue)

int idComDev; /* Identifier of the communication device */

int fnQueue; /* Queue to be flushed */

The FlushComm function is used to flush out all characters from the transmission queue or reception

queue of the communication device.

< Parameter >

idComDev : Specifies the communication device to be flushed. The OpenComm function returns

this value.

fnQueue : Specifies the queue to be flushed. If this parameter is set to 0, the transmission queue

is flushed, and if set to 1, the reception queue is flushed.

< Return value >

Returns zero if the function is terminated normally. If the device specified by the idComDev

parameter is not valid, or if the queue specified by the fnQueue parameter is not valid, a value other

than zero is returned. If the specified device has an error, a positive value will be returned.

For more information about the error values refer to the GetCommError function description.

Note on IrDA:

Data transmission will take place only after the transmitted characters have been passed from the

transmission queue to the buffer in the IrDA driver. Even if the transmission/reception buffer

contains zero bytes, untransmitted data or received data may remain in the IrDA driver.

117

GetCommError

int GetCommError(idComDev, lpStat)

int idComDev; /* Communication device ID */

COMSTAT FAR *lpStat; /* Address of the device status buffer */

The GetCommError function is used to acquire the last error value and current status of the specified

device. If a communication error occurs, Windows will lock the communication port until the

GetCommError function cancels the error.

< Parameter >

idComDev : Specifies the communication device for which the status is to be checked.

The OpenComm function returns this value.

lpStat: This is a pointer to the COMSTAT structure that receives the device status.

If this parameter is NULL, this function returns the error value.

< Return value >

If the function is terminated normally, the error value of the communication function which called

the specified device most recently is returned.

< Error values >
CE_BREAK Indicates that the break state is detected. This functions if 9-Wire or 3-Wire

connection is established.
CE_CTSTO Not supported.
CE_DNS Not supported.
CE_DSRTO Not supported.
CE_FRAME Indicates that a framing error is detected. This functions if 9-Wire or 3-Wire

connection is established.
CE_IOE Not supported.
CE_MODE Not supported.
CE_OOP Not supported.
CE_OVERRUN Indicates that the previous character could not be read before the next character

was received. The previous character will be lost. This functions if 9-Wire or
3-Wire connection is established.

CE_PTO Not supported.
CE_RLSDTO Not supported.
CE_RXOVER Not supported.
CE_RXPARITY Indicates that a parity error is detected. This functions if 9-Wire or 3-Wire

connection is established.

118

CE_TXFULL Not supported at present. The data will be passed from the transmission queue to
the transmission buffer according to the IrDA protocol. It will be performed
asynchronously with the write timing of the transmission queue by the
WriteComm function. For example, if 2 kilobytes of data is written in a
transmission buffer 2 kilobytes in size, the transmission buffer becomes full.
This function is not supported because it is considered inappropriate for
CE_TXFULL to be used in such a case.

Note on IrDA:

Some of the above listed error values are not supported at present. Those which are currently

supported will function only if 9-Wire connection is established or if both 9-Wire and 3-Wire

connections are established. Some other functions are currently not supported.

Refer to the description of the DCB structure of the GetCommState function. For information about

the COMSTAT structure refer to the next page.

119

COMSTAT structure

typedef struct tagCOMSTAT { /* cmst */

BYTE status; /* transfer status */

UNIT cbInQue; /* Number of characters in the reception queue */

UNIT cbOutQue; /* Number of characters in the transmission queue */

} COMSTAT;

The COMSTAT structure is used to store information about the communication device.

< Members >
status Indicates the transfer status. This member consists of the following flags.

CSTF_CTSHOLD Not supported
CSTF_DSRHOLD Not supported.
CSTF_RLSDHOLD Not supported.
CSTF_XOFFHOLD Not supported.
CSTF_XOFFSENT Not supported.
CSTF_EOF Not supported.
CSTF_TXIM Not supported.

cbInQue Indicates the number of characters in the reception buffer.
cbOutQue Indicates the number of characters in the transmission buffer.

120

GetCommEventMask

UNIT GetCommEventMask(idComDev, fnEvtClear)

int idComDev; /* Communication device ID */

int fnEvtClear; /* Event to be cleared in the event word */

The GetCommEventMask function will acquire the bit specified by the fnEvtClear mask in the event

word, then clear it.

< Parameter >

idComDev : Specifies the communication device for which the event word is to be checked.

The OpenComm function returns this value.

fnEvtClear : Specifies the event to be cleared in the event word. For a list of event values refer

to the description about the SetCommEventMask function.

< Return value >

Returns a value that indicates the current event word of the specified communication device if the

function is terminated normally. Each bit of the event word represents whether the specified event

occurred. If the event actually occurred, the corresponding bit is set to 1.

Note:

The application must enable the event using the SetCommEventMask function before the

GetCommEventMask function records the occurrence of an event. If the communication device

event shows a line status error, the application should call the GetCommError function after

calling the GetCommEventMask function.

Note on IrDA:

Some of the events are not supported at present. refer to the description of the SetCommEventMask

function.

121

OpenComm

int OpenComm(lpszDevControl, cbInQueue, cbOutQueue)

LPCSTR lpszDevControl; /* Address of the device control information */

UNIT cbInQueue; /* Size of the reception queue */

UNIT cbOutQueue; /* Size of the transmission queue */

The OpenComm function will open the communication device.

< Parameter >

 lpszDevControl: Pointer to a character string that ends with a NULL. This character string is the

 device name in the format of COMn (n denotes the device number).

 cbInQueue: Specifies the size of the reception queue in bytes.

 cbOutQueue: Specifies the size of the transmission queue in bytes.

< Return value >

Returns a value that identifies the opened device if the function is terminated normally. Otherwise it

returns a value less than zero.

< Error values >
IE_BADID The device ID is invalid or not supported.
IE_BAUDRATE The device baud rate is not supported.
IE_BYTESIZE The specified byte size is invalid.
IE_ DEFAULT The default parameter is incorrect.
IE_HARDWARE The hardware is not available (locked by another device).
IE_MEMORY The function cannot assign a queue.
IE_NOPEN The device is not open
IE_OPEN The device is already open. If calling this function by specifying zero for the

size of both the queues, IE_OPEN or IE_MEMORY will be returned
depending on whether the device is already open.

Note:

For Windows COM ports 1 through 9 are available. If the device driver does not support these

communication port numbers, execution of the OpenComm function fails. The communication

device is initialized by the default settings. To set other values for the device use the SetCommState

function. The reception and transmission queues are used for the interrupt-driven type device driver.

122

Note on IrDA:

The OpenComm function does not support the LPT device. Since the OpenComm function does not

control the power block of IrDA, the user should turn the power block to ON before executing this

function. On the IT-2000 the IrDA interface is assigned to COM2 port, therefore the COM2 port

should be specified. The OpenComm function operates differently depending on whether the

terminal operates as the primary station or the secondary station. The WIN.INI file is used to specify

the station type. If the terminal operates as the primary station, the XID command can be used to

perform the discovery operation for the required number of times. If this is done when the terminal is

successfully connected to the secondary station, it operates as the primary station after this function

is terminated normally. In other cases, if the terminal fails to connect with the secondary station (e.g.

specified class or attribute is absent) or if the specified number of discoveries are completed before

the connection is established, this function is terminated normally and the terminal operates as the

secondary station and waits for a connection specification from the primary station until the

CommClose function is executed.

For information about the WIN.INI file refer to Chapter 7.9.3 "Setting Up WIN.INI File".

123

GetCommState

int GetCommState(idComDev, lpdcb)

int idComDev; /*Communication device ID */

DCB FAR * lpdcb; /* Address of the device control block structure */

The GetCommState function will acquire the device control block of the specified device.

< Parameter >

idComDev : Specifies the device for which the DCB is to be checked. The OpenComm function

returns this value.

lpdcb : This is a pointer to the DCB structure that receives the current device control block.

The DCB structure defines how to control the device.

< Return value >

Returns zero if the function is terminated normally. Otherwise it returns a value less than zero.

Note on IrDA:

This function will read the parameter values set by the SetCommState function for functions that are

not currently supported.

124

ReadComm

int ReadComm(idComDev, lpvBuf, cbRead)

int idComDev; /* ID of the device to be read */

void FAR * lpvBuf; /* Address of the buffer from which bytes are read */

int cbRead; /* Number of bytes to read */

The ReadComm function will read the byte data from the specified communication device and

assume the specified number is the maximum bytes.

< Parameter >

idComDev : Specifies the device to be read. The OpenComm function returns this value.

lpvBuf: Pointer to the buffer from which the bytes are read.

cbRead: Specifies the number of bytes to read.

< Return value >

This function returns the number of bytes having been read if the function is terminated normally.

Otherwise it returns a value less than zero, and the absolute value of the return value indicates the

number of bytes that were read.

Note:

If an error occurs, the user can survey the cause of the error by acquiring the error value and status

via the GetCommError function. Since an error may occur if no bytes are present in the buffer,

always make sure that an error has not occurred using the GetCommError function, even if the

return value is 0. The return value can be less than the number specified by the cbRead parameter

only if it is greater than the received number of bytes in the queue. If the return value is equal to

cbRead, some additional bytes for the device may remain in the device queue. If the return value is

0, no bytes remain.

Note on IrDA:

Since the communication flow is controlled according to IrDA protocol, the reception buffer will not

cause an overflow.

125

SetCommBreak

int SetCommBreak(idComDev)

int idComDev; /* Device to interrupt communication */

The SetCommBreak function is used to interrupt character transmission and set the communication

device to the break state.

< Parameter >

idComDev: Specifies the communication device to be interrupted. The OpenComm function returns

this value.

< Return value >

Returns zero if the function is terminated normally. Otherwise a value less than zero will be

returned.

Note:

The communication device continues to be interrupted until the application calls the

ClearCommBreak function.

Note on IrDA:

The SetCommBreak function will operate only if 9-Wire or 3-Wire connection is established. It will

not function if 3-Wire RAW connection is established. If this is the case, the SetCommBreak

function will be terminated normally.

126

SetCommEventMask

UNIT FAR *SetCommEventMask(idComDev, fuEvtMask)

int idComDev; /* Communication device to be enabled */

UNIT fuEvtMask; /* Event to be enabled */

The SetCommEventMask function will enable the event included in the event word of the specified

communication device.

< Parameter >
idComDev Specifies the communication device to be enabled. The OpenComm function

returns this value.
fuEvtMask Specifies the event to be enabled. This parameter consists of any combination of

the following values.
EV_BREAK Set if a break state is detected at data input. This functions if

9-Wire or 3-Wire connection is established.

EV_CTS Set if the status is changed by the CTS (clear to send) signal.
This functions if the 9-Wire connection is established.

EV_CTSS Set if the current status of the CTS signal is indicated.
This functions if the 9-Wire connection is established.

EV_DSR Set if the status is changed by the DSR (data set ready) signal.
This functions if the 9-Wire connection is established.

EV_ERR Set if the line status error occurs. The line status error will be
either CE_FRAME, CE_OVERRUN or CE_RXPARITY.
This functions if the 9-Wire or 3-Wire connection is established.

EV_PERR Not supported.

EV_RING Set if the ring indicator status is indicated during the last modem
interrupt. This functions if the 9-Wire connection is established.

EV_RLSD Set if the status is changed by the RLSD (receive line signal detect)
signal. This functions if the 9-Wire connection is established.

EV_RLSDS Set if the current status of the RING signal is indicated. This
functions if the 9-Wire connection is established.

EV_RXCHAR Set if a character is received and placed in the reception queue

EV_RXFLAG Not supported.
EV_TXEMPTY Set if the last character in the transmission queue is send out.

< Return value >

Returns a pointer that indicates the current event word of the specified communication device if the

function is terminated normally. Each bit of the event word represents whether the specified event

occurred. If the event actually occurred, the corresponding bit is set to 1.

127

Note:

The application must enable the event using the SetCommEventMask function before the

GetCommEventMask function records the occurrence of an event. If the communication device

event shows a line status error, the application should call the GetCommError function after calling

the GetCommEventMask function.

Note on IrDA:

Some of the events are not supported at present. Some of the supported functions will operate only if

9-Wire connection is established or if both 9-Wire and 3-Wire connections are established.

128

SetCommState

int SetCommState(lpdcb)

const DCB FAR * lpdcb; /* Address of the device control block */

The SetCommState function will set the communication device to the state that is specified by the

device control block.

< Parameter >

lpdcb: Pointer to the DCB structure that stores the communication settings for the device.

Specify the device name for the Id member of the DCB structure.

< Return value >

Returns zero if the function is terminated normally. Otherwise it returns a value less than zero.

Note:

This function will re-initialize all the control items defined by the DCB structure, but will not clear

the transmission and reception queues.

Note on IrDA:

Some of the control items defined by the DCB structure are not supported at present. Some of the

supported functions will operate only if the 9-Wire connection is established or if both the 9-Wire

and 3-Wire connections are established. If at attempt is made to define the functions not supported,

the SetCommState function will be terminated normally. For information about the DCB structure

refer to the next page.

129

DCB structure

typedef struct tagDCB /* DCB */

{

BYTE Id; /* internal device ID */

UNIT BaudRate; /* Baud rate */

BYTE ByteSize; /* Number of bits per byte (4-8) */

BYTE Parity; /* 0 = None, 1 = Odd, 2 = Even, 3 = Mark, 4 = Space */

BYTE StopBits; /* 0 = 1 bit, 1 = 1.5 bits, 2 = 2 bits */

UNIT RlsTimeout; /* Timeout of RLSD set */

UNIT CtsTimeout; /* Timeout of CTS set */

UNIT DsrTimeout; /* Timeout of DSR set */

UNIT fBinary; /* Binary mode (without EOF check) */

UNIT fRtsDisable; /* Ignores RTS at initialization. */

UNIT fParity; /* Enables the parity check. */

UNIT fOutxCtsFlow; /* CTS handshake at output */

UNIT fOutxDsrFlow; /* DSR handshake at output */

UNIT fDummy;

UNIT fDtrDisable; /* Ignores DTR at initialization. */

UNIT fOutX; /* Enables XON/XOFF at output. */

UNIT fnInX; /* Enables XON/XOFF at input. */

UNIT fPeChar; /* Execute replacement because of a parity error. */

UNIT fNull; /* Enables Null stripping. */

UNIT fChEvt; /* Enables the transmission character event. */

UNIT fDtrflow; /* DTR handshake at input */

UNIT fRtsflow; /* RTS handshake at input */

UNIT fDummy2; /* Reserved */

char XonChar; /* XON character for transmission and reception */

char XoffChar; /* XOFF character for transmission and reception */

UNIT XonLim; /* XON threshold at transmission */

UNIT XoffLim; /* XOFF threshold at transmission */

char PeChar; /* Replacement character to be used at parity error */

char EofChar; /* Delimiter of the input characters */

char EvtChar; /* Received event character */

UNIT TxDelay; /* Delay time between characters */

} DCB;

130

The DCB structure defines the control setups of serial communication.

< Members >
Id Identifies the communication device. This value is set by the device driver.

If the most significant bit (MSB) is set, the DCB structure is used for a parallel
communication device.

BaudRate Indicates the baud rate representing the processing speed of the communication
device. If the upper byte is 0xFF, the lower byte indicates the baud rate index
This index takes one of the following

values CBR_9600, CBR_19200, CBR_38400, CBR_56000, CBR_128000, and
CBR_256000. If the upper byte is has a value other than 0xFF, this parameter
indicates the actual baud rate. If a baud rate index other than one described above
is used, SetCommState results in error. This function operates only if both
the 9-Wire and 3-Wire connections are established.

ByteSize Indicates the number of bits to be transmitted/received. The value of the ByteSize
member ranges between 5 and 8. A value of 4 is not supported.
This function operates if both the 9-Wire and 3-Wire connections are established.

Parity Indicates the parity check method to be used. This member takes one of the
following values. This function operates if both the 9-Wire and 3-Wire
connections are established.

EVENPARITY Even number
MARKPARITY Mark
NONPARITY No parity check
ODDPARITY Odd number

StopBits Indicates the number of stop bits to be used. This member takes one of the
following values. A value of 1.5 bits is not supported. This function operates if
both the 9-Wire and 3-Wire connections are established.

ONESTOPBIT 1 bit
TWOSTOPBITS 2 bits

RlsTimeout Not supported.

CtsTimeout Not supported.

DsrTimeout Not supported.

fBinary Indicates the binary mode. Non-binary mode is not supported.

fRtsDisable Indicates whether to disable the RTS (request to send) signal. If the fRtsDisable
member is set, the RTS signal will be kept being turned off. Or, the member is
cleared, the signal will be turned on if the device is opened, and will be turned off
if the device is closed. This function operates if the 9-Wire connection is
established.

fParity Indicates whether or not to perform a parity check. If the fParity member is set,
the parity check is performed and an error is reported, if one occurs.
This function operates if both the 9-Wire and 3-Wire connections are established.

131

fOutxCtsFlow Not supported.
fOutxDsrFlow Not supported.
fDummy Reserved.

fDtrDisable Indicates whether to disable the DTR (data terminal ready) signal. If this
member is set, the DTR signal is not used and remains off. If this member is
cleared, the DTR signal will be sent if the device is opened, and will be turned
off if the device is closed. This function operates if the 9-Wire connection is
established.

fOutX Not supported.
fnInX Not supported.
fPeChar Not supported
fNull Not supported.
fChEvt Not supported.
fDtrflow Not supported.
fRtsflow Not supported.
fDummy2 Reserved.
XonChar Not supported.
XoffChar Not supported.
XonLim Not supported.
XoffLim Not supported.
PeChar Not supported.
EofChar Not supported.
EvtChar Not supported.
TxDelay Not used in the current version.

132

TransmitCommChar

int TransmitCommChar(idComDev, chTransmit)

int idComDev; /* Communication device */

char chTransmit; /* Character to be transmitted */

The TransmitCommChar function places the specified character at the top of the specified

transmission queue.

< Parameter >

idComDev : Specifies the communication device to which characters are transmitted.

 The OpenComm function returns this value.

ChTransmit : Specifies the characters to be transmitted.

< Return value >

Returns zero if the function is terminated normally. If the character could not be transmitted,

it returns a value less than zero.

Note:

If the device is not transmitting a character, the TransmitCommChar function cannot be called

repeatedly. If a character has been placed in the communication queue with the TransmitCommChar

function, that character must be transmitted so that the function can be called again. If the previous

character has not been transmitted yet, this function returns an error value.

Note on IrDA :

Data transmission will take place only after the transmitted characters have been passed from the

transmission queue to the IrDA driver. The specified characters will be transmitted after the

remaining data in the IrDA driver has been transmitted. The TransmitCommChar function will pass

the characters to the IrDA driver preceding the data in the transmission queue.

133

UngetCommChar

int UngetCommChar(idComDev, chUnget)

int idComDev; /* Communication device */

char chUnget; /* Character to be placed in the queue */

The UngetCommChar function replaces the specified character in the reception queue. At the next

read operation, this character will be read first.

< Parameter >

idComDev : Specifies the communication device which receives the characters. The OpenComm

function returns this value.

chUnget : Specifies the characters to be placed in the reception queue.

< Return value >

 Returns zero if the function is terminated normally. Otherwise it returns a value less than zero.

Note:

The UngetCommChar function cannot be called repeatedly. To make it possible to call this function

again, it is necessary to read out characters in the queue.

Note on IrDA:

There are no particular use restrictions.

134

WriteComm

int WriteComm(idComDev, lpvBuf, cbWrite)

int idComDev; /* Communication device ID */

const void FAR * lpvBuf; /* Address of the data buffer */

int cbWrite; /* Number of bytes to write */

The WriteComm function will write to the specified communication device.

< Parameter >

idComDev: Specifies the device that receives the data. The OpenComm function returns this

value.

lpvBuf: Pointer to the buffer that stores the bytes to write.

cbWrite: Specifies the number of bytes to write.

< Return value >

This function returns the number of bytes written if the function is terminated normally. Otherwise it

returns a value less than zero, and the absolute value of the return value indicates the number of

bytes that were written.

Note:

To judge if an error occurred, use the GetCommError function to acquire the error value and error

status. In the case of a serial port, the WriteComm function will delete the data in the transmission

queue, if it is full and has no space for more byte data. Therefore, before calling the WriteComm

function, the application should call the GetCommError function to check for available memory

space in the transmission queue. In addition, use the OpenComm function to set the size of the

transmission queue to a value greater than the maximum possible size of the outputted character

string.

Note on IrDA:

Even if the transmission queue contains zero bytes of transmission characters, untransmitted data

remain in the IrDA driver.

135

7.9.3 Setting Up WIN.INI File

The following parameters must be set in the [IrDA.COM2] section of the WIN.INI file. If these

parameters are not specified or if invalid parameters are set, communication will be performed

according to the default values.

Setup example

[IrDA.COM2]

IrDA=ON

MaxBaudRate=115200

SizeWindow=1

SizeData=1024

DisconnectThresholdTime=40

MaxTurnAroundTime=500

MinTurnAroundTime=10000

NumBOF=0

DeviceNickName=devicenickname

DeviceName=devicename

DiscoverCount=0

ServiceType=7

Each item has the following definition:

IrDA
Sets to the COM port irrespective of whether IrDA protocol is used.

Parameter

ON COM port uses IrDA protocol.

OFF (default) COM port does not use IrDA protocol (it uses direct serial protocol).

136

MaxBaudRate
Sets the baud rate (for IR communication). It is one the negotiation parameters. Parameters less than

the default value can be concatenated using ORs.

Parameters
2400 Maximum baud rate is 2.4 Kbps.

9600 (default) Maximum baud rate is 9.6 Kbps.
19200 Maximum baud rate is 19.2 Kbps
38400 Maximum baud rate is 38.4 Kbps
57600 Maximum baud rate is 57.6 Kbps.

115200 Maximum baud rate is 115.2
Kbps.

576000 Maximum baud rate is 0.5 Mbps.
4000000 Maximum baud rate is 4 Mbps

SizeWindow
Sets the number of windows. It is one of the negotiation parameters. This is, however, fixed to 1.

Parameter

1 (default) The number of windows is 1.

SizeData
Sets the data size. It is one the negotiation parameters.

Parameter
64 (default) Data size is 64 bytes.

128 Data size is 128 bytes.
256 Data size is 256 bytes.
512 Data size is 512 bytes.

1024 Data size is 1024 bytes.
2048 Data size is 2048 bytes.

DisconnectThresholdTime
Sets the maximum value of the disconnect threshold time. It is one the negotiation parameters.

A parameter with a value smaller than those listed bellow will be set by OR.

Parameters
3 The maximum value of the threshold time is 3 seconds.
8 The maximum value of the threshold time is 8 seconds.

12 The maximum value of the threshold time is 12 seconds.
16 The maximum value of the threshold time is 16 seconds.
20 The maximum value of the threshold time is 20 seconds.
25 The maximum value of the threshold time is 25 seconds.
30 The maximum value of the threshold time is 30 seconds.

40 (default) The maximum value of the threshold time is 40 seconds.

137

MaxTurnAroundTime
Sets the maximum turnaround time. It is one of the negotiation parameters. This is, however, fixed

to 500 msec.

Parameter

 500 ms. (default) Maximum turnaround time is 500 ms.

MinTurnAroundTime
Sets the minimum turnaround time. It is one of the negotiation parameters.

Parameters

5 ms Minimum turnaround time is 5 ms.

10 ms (default) Minimum turnaround time is 10 ms.

NunBOF
Sets the number of BOFs to be added. It is one of the negotiation parameters.

Parameters
0 (default) 0 BOF is added.

1 1 BOF is added.
2 2 BOFs are added.
3 3 BOFs are added.
6 6 BOFs are added.

12 12 BOFs are added.
24 24 BOFs are added.
48 48 BOFs are added.

DeviceNickName
Sets the nickname included in the device information of the XID frame. A maximum of sixteen

1-byte characters can be set. The seventeenth and subsequent characters will be ignored.

Parameters

Optional character string Device nickname in the device information

IT-2000 (default) Handy terminal name

138

DeviceName
Sets the device name to be registered as the "DeviceName" of the IAS attribute. A maximum of

sixteen 1-byte characters can be set. The seventeenth and subsequent character will be ignored.

Parameters

Optional character string Device name for the "DeviceName" attribute

Vx.xx (default) Version number of the IrDA driver

DiscoverCount
Sets up the station specification. If this function is set so it operates on the primary station it

performs discoveries. One discovery will cover six slots. If this function is set so it operates on the

secondary station, it waits for a discovery result from the primary station.

Parameters

0 Operates on the secondary station.

n Operates on the primary station and performs discovery 'n' times. If the 'n'

discovery have been made, it operates on the secondary station.

1 Operates on the primary station and performs only one discovery.

ServiceType
Sets the Wire service type of my station. Multiple parameters can be set at once by concatenation

them using logical sum (OR).

Parameters
1 3-Wire-RAW service
2 3-Wire service
3 3-Wire-RAW or 3-Wire service
4 9-Wire service
5 3-Wire-RAW or 9-Wire service
6 3-Wire or 9-Wire service
7 (default) 3-Wire-RAW or 3-Wire or 9-Wire service

139

7.9.4 Installation Method

The method used to install the IrDA driver in Windows is described here. Using WINST.EXE it is

also possible to install it according to the default settings. Use the following information as a

reference for manual installation or if modifying the setup contents.

The Windows3.1 IrDA driver is installed with the following procedure. Assume that this installation

is made in the Windows system, and that installation is made from the card drive (G:) in

D:�WINDOWS.

� Copy IRDA.DLL and IRCOMM.DRV into D:�WINDOWS or D:�WINDOWS�SYSTEM.

� Copy COMM.DRV into the MASK ROM drive into D:�WINDOWS, then rename it.

� Modify the contents of the SYSTEM.INI file as follows:

Modify the following settings in the “boot” section.

(Before modification)

 comm.drv=comm.drv

(After modification)

 comm.drv=ircomm.drv

Add the following section to the end of the file.

[Ircomm.drv]

comm=RSCOMM.DRV

IrDA=IRDA.DLL

> COPY G:�IRDA.DLL D: �WINDOWS

> COPY G:�IRCOMM.DRV D:�WINDOWS

> COPY E: �WINDOWS�COMM.DRV D: �WINDOWS�RSCOMM.DRV

140

� Add the following to the WIN.INI file. For information about the setup value of each entry

refer to Chapter 7.9.3 "Setting Up WIN.INI File".

Setup example

 [IrDA.COM2]

 IrDA=ON

 MaxBaudRate=115200

 SizeWindow=1

 SizeData=1024

 DisconnectThresholdTime=40

 MaxTurnAroundTime=500

 Min TurnAroundTime=10000

 NumBOF=0

 DeviceNickName=devicenickname

 DeviceName=devicename

 DiscoverCount=0

 ServiceType=7

The above operations complete the installation procedure.

141

8. Application Development

8.1 Overview

This terminal uses the IBM PC/AT architecture. Though the actual display size is 192 (H) x 384 (V)

pixels, internally the area of 640 (H) x 480 (V) pixels is supported by the dedicated display driver.

It allows no limitation on programming. Therefore, if the user develops an application that makes

use of the upper left side (192 (H) x 384 (V)) as display area, a dedicated application program will

run on this terminal. It is possible to have coding also by using GetSystemMetrics of Windows API

which can not be affected by the operating environment. Also, since the numeric keys of the IT-2000

generate the same keycodes as the IBM PC/AT machine, there is no need to discriminate between

this terminal and the development machine in terms of the standard input/output operations.

In the IT-2000, a dedicated mouse driver has been installed to support the touch panel. Application

program can acquire the tapping on the touch panel as it is clicked by the button on the left side of

mouse. However, there is one limitation which does not allow the double-clicking (or double tapping

on the touch panel). The reason is that it is not possible for the user to tap twice on the same narrow

point. Therefore, a programmer must design such application program so that it can accept only

input by single tapping on the panel.

Applications that use the COM1 port (8-pin) can be programmed in the same way they are for

MS-Windows programming except that they must include the power control functions. On this

terminal, the power to the COM port is default-set to off so that the power consumption is reduced

to a minimum. Therefore, application programs that use the COM port must turn on the power to the

COM port in advance using the system library.

142

8.2 Notes on Developing Application

� The use of double clicks on this terminal extremely difficult. Develop your application program

so that only single click is enabled

� Any program that uses the COM port must turn on the power to it in advance using the system

library. The power to the COM port remains on once it has been turned on, or until it is turned

off by the system library or until the RESET button is pressed. Therefore, do not forget to turn

off the power to the COM port when it is no longer required. This power is automatically

turned off during the suspend state, but power is restored to it if system operation is resumed.

Accordingly, the application program side does not have to be aware of the power condition.

� If a program is running on MS-DOS/MS-Windows, data may not always be written in the

physical disk each time the file write function is called. MS-DOS/MS-Windows will hold the

write data in memory until a given amount of data is accumulated. Do not turn the power off

and on or remove and insert the card if this occurs. If this event occurs, the programmer should

create an application which calls the COMMIT command form MS-DOS after attempting a

write to the disk. This COMMIT function can also be called using the _dos_commit () function

of Microsoft-C.

� While a file in SRAM card is being opened under Windows, the operation of the access to the

card is aborted if suspend is executed. This will cause INT24 error when the access to the

SRAM card for writing or closing is continued after the resume. When you use an SRAM card

under Windows, please be sure to perform the operation steps in sequence of “open � write �

close”.

143

8.3 Development Environment

8.3.1 Development Environment

To develop application programs a 16-bit compiler, Microsoft C/C ++ 7.0 or later, and a computer

on which the compiler can run are required.

8.3.2 Application Development Library

For this terminal various libraries such as the keypad library and OBR library, which is used to

enhance the efficiency of developing applications. This terminal is also provided with the libraries

of controlling the IT-2000 dedicated devices such as the backlight control and device power control,

etc. However, those processes which depend on interfaces of hardware are managed with DLL, and

the dedicated functions cannot be linked to application program directly.

 Fig. 8.1

Note:

In case Visual BASIC is used as the development language, the libraries in boxes with

broken-dot-line in Fig. 8.1 are not needed.

SysCall.DLL

LibSYSW.LIB

Application Program

LibOBRW.LIB

PADCTRL.VBX

PenMouse.drv

OBRLIB.DLL

Handy Terminal Original Hardware

LibYMOD.LIB

YMODEM.DL FLINK.DLL

Mouse Event

LibSYSW.LIB

MS-Windows

AT Architecture
IrDA Driver

VKD.386

VGA_NC.drv

Display Req.

FLINK.LIB

144

These libraries do not have to be always used. And, in as far as standard MS-Windows is pursued,

they do not have to be used at all. The sole exception is that the COM port power must be turned on

via the system library if the user wants to control the COM port directly.

8.3.3 Simulation Driver

As explained above, the libraries for this terminal only control hardware that is compatible with the

IBM PC/AT. This is important to remember if application programs for the terminal are developed

on a personal computer. Although each library is linked to the application program to form an

executable program, they do not contain code that is specific to the hardware of the handy terminal.

Consequently, if a simulation driver is used rather than one of the drivers dependent on the terminal

hardware, the application program can be made to run, without modification, on the personal

computer. This is the basic concept of simulation.

The diagram below shows the simulation environment that has been constructed on the personal

computer. By replacing SysCall.DLL with the simulator, there will not be any part which depends

on the IT-2000 hardware. This allows the simulation program to run on the personal computer

without having no software modification for application program.

 Fig. 8.2

For information about SysCall.DLL for simulation refer to Chapter 8.5.1 "System Driver

Simulator (SysCall.DLL)".

SysCall.DLL (Simulator)

LibSYSW.LIB

Application Program

LibOBRW.LIB

PADCTRL.VBX

Std. Mouse Drv.

OBRLIB.DLL

LibYMOD.LIB

YMODEM.DL

Mouse Event

LibSYSW.LIB

MS-Windows

AT Architecture

Std. VGA Drv.

Display Req.

FLINK.DLL Std. COM Drv.

LibYMOD.LIB

145

8.4 Program Development Procedure

The following diagram shows the basic procedural flow used to develop an application program that

runs on this terminal. The following paragraphs explain the details of each phase of the procedural

flow.

 Fig. 8.3

OKNG
Operation OK

<IT-2000 side>< PC side >

Creation/Edition of sourcecode

Compile/Assemble

Link

Operation check on IT-2000

End

PC simulation

Transfer

Start

146

8.4.1 Creation of Execution File

Application developers should develop programs using various application development libraries.

The following sample program is used to turn on and off the backlight. With this program the

backlight will be turned on or off if either "1" or "0", respectively, is entered through the numeric

keypad. This program can be terminated by the input of the ESC key.

The following program shows only a part of the whole program which controls the backlight in the

Windows Procedure.
#include <windows.h>
#include “syslib.h”

 case WM_CHAR:
 switch (ch = wParam) {
 case '0':
 case '1':
 SYS_SetBackLight(ch - ‘0’); /* System Library function */
 default:
 break;
 }
 }

Next, create the execution file with the following procedure.

This example assumes that the SDK of the IT-2000 has been installed in C:� IT-2000. If it is

installed in another directory, it is necessary to designate the location in which to store the header

file and library file according to the development environment. These designation can be made

using the environment variables INTCLUDE and LIB.

For more information refer to a compiler manual published separately by a third party.

<Test.c>

C:�SAMPLE>cl -c -G2sw -Zp -W3 -Otin -Ic: �IT-2000 �include test.c

Microsoft (R) C/C++ Optimizing Compiler Version 8.03

Copyright (c) Microsoft Corp 1984-1995. All rights reserved.

test.c

C:�SAMPLE>link /NOD /NOE /LI /m test,,,c: �IT-2000 �lib �libsysw,test.def

Microsoft (R) Segmented Executable Linker Version 5.63.2 20 Nov 29 1994

Copyright (C) Microsoft Corp 1984-1995. All rights reserved.

C:�SAMPLE>

147

8.4.2 Debugging Through Simulation

Before the debugging, SysCall.DLL (for simulation) must be copied to the directory of

Windows�System. Since the same name, SysCall.DLL, is used for actual debugging and for

simulation, please pay your attention not to make copy for wrong one. When you execute the sample

program, window will appear on screen of IT-2000. It is monitoring window for the simulation.

 Fig. 8.4

Under this condition the program simply waits for key input. The backlight is off. To confirm this

condition use the monitor function of the simulator. In this condition press the "1" key. The sample

program shown above is designed so that the backlight is turned on if it receives "1". The result is

shown below. Now, the monitoring window indicates that the backlight is ON.

148

 Fig. 8.5

The outline of the operation test using the simulation driver is summarized above. Debugging can of

course be performed using Microsoft's CodeView debugger.

For more information about SysCall.DLL for simulation driver refer to Chapter 8.5.1 "System Drive

Simulator (SysCall.DLL)".

149

8.4.3 Operation Check on IT-2000 (Using COM2KEY/XY)

If software coordination through simulation has been completed, it should be transferred onto the

IT-2000 for operation checks. To do this use the COM2KEY utility. The COM2KEY utility will,

when the COM port of a personal computer is connected with the IT-2000 via the dedicated cable

(DT-9689AX), use the personal computer as a dumb terminal of the IT-2000. For more information

about the COM2KEY utility refer to Chapter 9.9 "COM2KEY Utility".

A batch file (1.BAT) for initiating this COM2KEY utility is installed on the basic drive of the IT-

2000. It can be initiated by using the appropriate numeric key while the IT-2000 is in the command

 prompt state. Since the major purpose of this utility is in assisting application development, it can be

 directly called from AUTOEXEC.BAT. Moreover, it can be registered as a device driver.

 This is convenient for developing device drivers to be registered in CONFIG.SYS. In this case,

 register the COM2KEY utility before registering a developed device driver, and redirect the

 COM2KEY utility to the personal computer with the start-up message of the device driver.

The following is the program transfer procedure used with the COM2KEY utility.

� Connect the personal computer and IT-2000 with the dedicated cable (DT-9689AX).

� Initiate the terminal software on the personal computer side and establish communication at

 9600 bps. There are no particular requirements for use of the terminal software. YMODEM/bat

 protocol is available.

� Initiate COM2KEY on the IT-2000. For information about the initiation method, refer to Chapter

9.9 "COM2KEY Utility".

� With the above procedure the command prompt of the IT-2000 will appear on the terminal

software screen. Under this condition initiate the XY utility and perform the program transfer, as

follows:

D:�>

D:�>xy/ry /N

� After the above operation has been performed the IT-2000 remains in the wait state for file

reception with the YMOD EM/bat protocol. Use the upload function of the terminal software to

transfer the application program.

� If file transfer has been completed, the operation check of the program can be performed.

Of course, this MS-Windows can be initiated with a command line displayed by the terminal

software on the personal computer.

D:>cd windows

D:�WINDOWS>WIN aplic

150

8.4.4 Installation of Application Program

This section describes how to install the application program, after it has been debugged, on the

actual terminal. The following table summarizes IT-2000 installation required after purchase.

(1) Installation of main battery and sub-batteries

(2) Calibration

(3) Formatting the F-ROM drive (for models with an F-ROM drive).

(4) Setting the RAM disk size and formatting it (if the RAM disk is used)

(5) Setting the system time

(6) Other various setups including the Auto Power OFF time, etc.

(7) Copying application programs, CONFIG.SYS, AUTOEXEC.BAT, etc.

This section mainly explains about point (7) in the above table. For information about (2) through

(6), refer to Chapter 3 "System Menu".

There are three ways of installing applications in the IT-2000. Each is explained in detail below:

(1) Installation with a PC card

(2) Installation from a PC

(3) Copying application program onto another IT-2000

(1) Installation with a PC card

This method is used to automatically install the application using the card boot function. To do this,

first create an ATA card for card boot and store the developed application program on it. Then

provide a line through which to copy the application program into the IT-2000 in the

AUTOEXEC.BAT file that will be executed at card boot.

How to create a card for installation :

� Make an appropriate directory on the ATA card and copy the application program, files

that are used by this application program, CONFIG.SYS, and AUTOEXEC.BAT onto

this directory.

� Create CONFIG.SYS and AUTOEXEC.BAT for card boot. At the end of

AUTOEXEC.BAT add a line for copying the above mentioned directory wholly onto the

user disk.

� The above steps complete the creation of a card for installation.

151

Installation work :

� In the slot, insert the ATA card that has been created for installation and lock the card

lock switch.

� If the terminal power is currently on, turn it off. Then press the RESET switch to initiate

the System Menu. Turn the Power switch to OFF and then to ON. The card boot process

will take place.

� If the batch files called from AUTOEXEC.BAT have been successfully executed,

installation of the application has been completed.

(2) Installation from a PC

This method is used to directly transfer the appropriate files from the PC to the IT-2000 using the

serial cable or I/O Box. For information about this method of file transfer from the PC refer to

Chapter 3.10 " YMODEM Utility", or Chapter 3.11 "FLINK Command".

(3) Copying application program onto another IT-2000

This method is used to mirror-copy the entire contents of the F-ROM drive of one IT-2000 to

another IT-2000. If an application has been installed on one IT-2000 the application can be installed

on another IT-2000. No accessories, such as a card or cable, are required. For more information

refer to Chapter 3.11 "FLINK Command".

152

8.5 Simulation Driver

The simulation driver is used to develop on a personal computer the application programs that run

on the IT-2000.

The application development libraries supported for this terminal control only the hardware that is

compatible with the IBM PC/AT. This is important to remember if the application programs for the

terminal are developed on a personal computer. Although each library is linked to the application

program to form an executable program, they do not contain code that is specific to the hardware of

the handy terminal. Consequently, if a simulation driver is used rather than one of the drivers

dependent on the terminal hardware, the application program can be made to run, without

modification, on the personal computer. This is the basic concept of simulation.

The diagram below shows the simulation environment that has been constructed on the personal

computer. By replacing SysCall.DLL with the simulator, there will not be any part which depends

on the IT-2000 hardware. This allows the simulation program to run on the personal computer

without having no software modification for application program.

 Fig. 8.6

In the following chapters, System Library Simulator (SysCall.DLL) is explained in detail.

SysCall.DLL (Simulator)

LibSYSW.LIB

Application Program

LibOBRW.LIB

PADCTRL.VBX

Std. Mouse Drv.

OBRLIB.DLL

LibYMOD.LIB

YMODEM.DL

Mouse Event

LibSYSW.LIB

MS-Windows

AT Architecture

Std. VGA Drv.

Display Req.

FLINK.DLL Std. COM Drv.

LibYMOD.LIB

153

8.5.1 System Library Simulator (SysCall.DLL)

Overview
This system library simulator can be called by various libraries and application program and

simulate the operations of the dedicated IT-2000 hardware.

File name

 SysCall.DLL

Note:

In the development tool package, the file name is “SysCallp.DLL”. When you use the file, change

the name of file to “SysCall.DLL”.

Function
In principle SysCall.DLL is called via the system library (LibSYSW.LIB) and makes various setups

regarding the IT-2000 hardware. Under the Windows environment call of a DLL is performed by

specifying the DLL name and exported entry name. Therefore, if a SysCall.DLL to be called has

been replaced with other one for simulation, the calling subject may not be aware of the fact.

SysCall.DLL for simulation retains the value, which, virtually, should be set in the hardware, in

memory according to the request from the application program. And, it returns this value when the

application program requests the acquisition of this value.

If, for example, the application program puts calls a function to turn on the backlight, the backlight

flag inside the SysCall.DLL for simulation will be set. Subsequently, if the application program

issues an acquisition request of the backlight status, the SysCall.DLL returns the flag value that has

been set previously. At this time, note that this simulator does not perform an exact simulation of the

IT-2000. In short, on an actual IT-2000 the backlight will be automatically turned off if the non-

operation state continues for a given period of time after it is turned on, however, this function does

not work on the simulator. The above mentioned flag in the simulator can be confirmed with the

monitor window opened on the screen. This window will be opened at the timing when a program

that calls SysCall.DLL is loaded into memory.

154

 Fig. 8.7

On the IT-2000 the backlight can be turned on and off by means of Fn + '7'. Namely, the backlight

status can be changed not only from the application program but also by the user's operation.

This operation on the simulator can be performed by clicking on the corresponding position on the

monitor screen. As shown in the above figure, there is a radio button to mimic the backlight, which

allows the current setup to be modified if the button is clicked on by the mouse.

Installation method
Copy SysCall.DLL for simulation in the Windows�System directory of the personal computer. As

explained already, SysCall.DLL for the actual terminal and SysCall.DLL for simulation have the

identical file name. Exercise care not to copy the other file.

Monitor window
The following figure shows the relationship between the monitor window and system library. But,

all the accesses to the system library can not be monitored with this window.

For example, SYS_SetResumeCondition and alarm-related services are not included. It is not of

course true that the simulator does not support these functions being not displayed. The reason is

that the monitor window is designed to display the selected items necessary for application

development so that the display area looks neatly organized.

155

 Fig. 8.8

SYS_SetThresholdOfABC

SYS_GetThresholdOfABC

SYS_GetBuzzerVolume

SYS_SetBuzzerVolume

SYS_GetLcdContrast
SYS_SetLcdContrast

SYS_LcdContrastUp

SYS_LcdContrastDown

SYS_GetConnectorStatus

SYS_SetConnectorStatus

SYS_GetDevicePower

SYS_SetDevicePower

SYS_GetKeyClick

SYS_SetKeyClick

SYS_GetABC

SYS_SetABC

SYS_GetLBStatus

SYS_GetBackLight

SYS_SetBackLight

SYS_GetPMStatus

SYS_SetPMStatus

SYS_GetCOM2Config

SYS_SetCOM2Config

SYS_GetApoTime

SYS_SetApoTime

SYS_GetAboTime

SYS_SetAboTime

156

Note on the simulation:
As explained previously, this simulator does not exactly simulate the IT-2000 operations. Moreover,

some operations can not be simulated because of the difference between the IT-2000 and personal

computer in terms of the hardware.

� Restrictions regarding the COM port

The operation of the COM port (8-pin) of the IT-2000 can be programmed in the same way as

for the COM1 port of the IBM PC/AT except the power control method. However, this post uses

an 8-pin DIN connector, which has a different shape from the COM port connector of the general

personal computers. Also, this connector is supplied a 5V power, which in turn provides power

to an external device such as an OBR. Consequently, although it is possible to develop, on a

personal computer, such a program that uses the COM port, it is not permitted to debug the

program while an external device such as the OBR is being connected to the port.

� Restictions regarding the IrDA port

The IT-2000 has installed the hardware to support the IrDA interface, which is controlled by

the dedicated driver.

Many recent personal computers also support the IrDA interface, however, the driver for the

IT-2000 can not be operated on these personal computers because of the difference in the

hardware. The IrDA driver for the IT-2000 has been installed in a form of a COM driver

(COM2) of MS-Windows. Therefore, if the user develops an application program that uses the

COM2 port, it can be operated with the IrDA driver of the IT-2000. Note, in this case, that the

IrDA driver on the IT-2000 is a subset of the COM port driver of MS-Windows.

157

8.6 Library

8.6.1 Overview

Since the IBM PC/AT architecture has been adopted in this system, all libraries including graphic

library supported by Microsoft C/C++ ver. 7.0 or later versions can be used. In addition to those,

the following dedicated libraries are available for the IT-2000 system.

Name of library Description Page
System Library Dedicated libraries for IT-2000 and to control various devices

available to the system. These libraries include back light
control, contrast control, battery voltage low detection, alarm
setting, etc.

158

Keypad Library Libraries to call the functions of Keypad driver. They are used to
input keys through keypad and to acquire coordinates on screen,
etc.

196

OBR Library Libraries to control the OBR functions. OBRs supported by the
system are the pen type and the ccd type.

213

YMODEM Library Libraries to transfer a file using YMODEM/bat protocol from an
application of Windows.

237

FLINK Library This is used for communication between IT-2000s or, between
IT-2000 and personal computer.

243

158

8.6.2 System Library

Overview
The IT-2000 has various dedicated functions that can control the backlight and the power of various

devices by software. These functions are consisted of the programs of the expanded BIOS in the

ROM and the keyboard controller (refer to Chapter 6 “Keyboard Controller”.). This library is used to

call the expanded BIOS and the keyboard controller from application programs developed with the C

language or Visual BASIC. The system library is consisted of the following files.

SysLib.H Header file for system library (for C language)
LibSysW.LIB Common library for each memory model (for C language)
SysCall.DLL System library
VKD.386 Communication module for keyboard controller

The relationship among the files is as follow. If your application program is developed with

C language, LibSysW.LIB must be linked. It can call automatically SysCall.DLL when the

application program is executed.

 Fig. 8.9

Application Program
written by VC

Application Program
written by VB

LibSysW.LIB

SysCall.DLL

Ext. BIOSVKD.386KBC

159

List of Libraries
The following functions are supplied in the system library:

Function Page Function Page
Acquisition of BIOS Version 160 Software Card Lock 178
Acquisition of Memory Device Size 161 Acquisition of Connector Status 179
Setting/Acquisition LCD Contrast 162 Key Click Sound ON/OFF 180
Increasing/Decreasing LCD Contrast 163 Acquisition of Key Click Sound Status 181
Switching Over COM2 Channel 164 Acquisition of Reboot Reason 182
Setting/Acquisition Reason Mask for
Reboot

165 Acquisition of OFF Reason 184

Reboot Request 166 Setting Cancellation of Next Resume
Process

184

Setting ABO Time 167 Acquisition of Cancellation Status of
Next Resume Process

185

Acquisition of ABO Time 168 Request of Suspend (Software OFF) 186
Setting ABC (Auto Backlight Control)
status

169 Acquisition of Low Battery Voltage
Status

187

Acquisition of ABC (Auto Backlight
Control) Status

170 Setting APO Time 188

Setting/Acquisition of ABC Threshold 171 Acquisition of APO Time 189
Backlight ON/OFF 172 Setting Status of Alarm 190
Acquisition of Backlight Status 173 Acquisition of Alarm Setting 191
Setting Buzzer Volume 174 Resetting Alarm 192
Acquisition of Buzzer Volume 175 Setting/Acquisition of Power ON

Alarm
193

Acquisition of Device Power Status 176 Setting/Acquisition of Status of Power
Control Function

194

Device Power ON/OFF 177 Setting Key Click Sound ON 195

160

Acquisition of BIOS Version
Acquires the ROM BIOS version number, which consists of the following three numbers:

major number, minor number, sub-number.

SYNTAX

long SYS_GetBiosVersion();

INPUT

None

OUTPUT

b23 to b16 Major number

b15 to b8 Minor number

b7 to b0 Sub-number

161

Acquisition of Memory Device Size
If the memory device size is designated, the total capacity of the DRAM and the number of

NAND FROM chips is read. The memory device size is the total capacity of all the physically

installed devices, and not the disc capacity.

SYNTAX

int SYS_GetMemCapacity(int nDevice);

INPUT

nDevice = device type

0 DRAM

1 NAND FROM

OUTPUT

= -1 Input parameter error

<> -1 DRAM size (by the unit of 1K)(where nDevice = 0)

Actual installed number of NAND chips (where nDevice = 1)

162

Setting/Acquisition LCD Contrast
The contrast of the LCD display is affected and varied by the ambient temperature. Therefore,

this terminal automatically detects the variation of ambient temperature and determines an optimal

contrast based on the acquired data. However, it may not immediately react to rapid temperature

variations or be ideal for each specific user. With this in mind, the terminal is provided with a means

to increase or decrease the LCD contrast manually.

The contrast value returned by this function is a correction value to the optimum contrast that has

been determined by automatic calculation. The value returned will be zero if no correction is made

manually; +1 or -1 will be returned if the contrast is increased or decreased by one step, respectively.

The range of contrast values that can be set or read varies according to the ambient temperature.

This is because the range of setup values that can be set for the hardware is between 0 and 31. If, for

example, the automatically calculated value is 10, the possible correction range is between - 10 and

+21. Consequently, the range of contrast values that can be read or set is between - 31 and +31.

The practical use of this library function lies in saving or loading the contrast setup prior to using the

SYS_LcdContrastUp() or SYS_LcdContrastDown() function.

SYNTAX

int SYS_GetLcdContrast(int WINFAR *nValue);

INPUT

nValue = Pointer to the area where the current correction value is acquired.

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

SYNTAX

int SYS_SetLcdContrast(int nValue);

INPUT

nValue = Correction value to be set

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

163

Increasing/Decreasing LCD Contrast
The contrast of the LCD display varies with the ambient temperature. Therefore, this terminal

automatically detects the ambient temperature and determines an optimal contrast based on the

acquired data. However, it may not immediately react to rapid temperature variations or be ideal for

each specific user. This function is used to correct the contrast value, which has been automatically

calculated by the system, to an optimal level.

The resulting contrast value adjusted using this function can be acquired via the

SYS_GetLcdContrast() function.

SYNTAX

int SYS_LcdContrastUp();

INPUT

None

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

SYNTAX

int SYS_LcdContrastDown();

INPUT

None

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

164

Switching Over COM2 Channel
IR, 14-pin, or 3-pin communication interface can be selected on the COM2 port. However,

since the 3-pin interface is an optional means to maintain software compatibility with other

models, it is not implemented on this terminal.

SYNTAX

int SYS_GetCOM2Config();

INPUT

None

OUTPUT

= 0 Not selected (default setting at RESET)

= 1 14-pin

= 2 3-pin

= 3 IR

SYNTAX

int SYS_SetCOM2Config(int nDevice);

INPUT

nDevlce = Device to be used

0 Not used

1 14-pin

2 3-pin

3 IR

OUTPUT

= 0 Normal

= -1 Parameter error

Note:

This function is not related to the device power control. As a result, this function does not need to be

restored to the "Not used" condition after the device has been used.

165

Setting/Acquisition of Reason Mask for Reboot
To acquire the reboot request reason, enable or disable “mounting on I/O Box” or use of the CI

signal for boot-up.

SYNTAX

int SYS_GetOnEventMask();

INPUT

None

OUTPUT

b0 = 0 Enable use of ring signal

1 Disable use of ring signal

b1 = 0 Enable use of “mounting on I/O Box”

1 Disable use of “mounting on I/O Box”

SYNTAX

int SYS_SetOnEventMask(int nMask);

INPUT

nMask = Setting the reboot reason mask

b0 = 0 Enable use of ring signal

1 Disable use of ring signal

b1 = 0 Enable use of “mounting on I/O Box”

1 Disable use of “mounting on I/O Box”

OUTPUT

= 0 Normal

= -1 Parameter error

166

Reboot Request
This function is used to restart (reboot) the system without suspending IT-2000 operations.

SYNTAX

int SYS_Reboot(int nMode);

INPUT

nMode = Reboot type

0 Initiates the application.

1 Initiates the system menu.

OUTPUT

= 0 Normal

= -1 Parameter error

167

Setting ABO Time
The ABO (Auto Backlight OFF) function is used to automatically turn off the backlight if neither

key entry nor touch-panel entry is permitted for a certain period of time. This function is used to

set the ABO time. Enable ABO by selecting a number between 1 and 15, which corresponds to

a period of between 20 seconds and 5 minutes.

SYNTAX

int SYS_SetAboTime(int nValue);

INPUT

nValue = ABO time

0 Not activate ABO

1 to 15 Activates ABO in specified number x 20 seconds.

OUTPUT

= 0 Normal

= -1 Parameter error

= -3 VxD not registered

Note:

This function will be implemented by a software timer. Therefore, the period until the backlight is

actually turned off has an error of +/- 10 % associated with it.

168

Acquisition of ABO Time
This function is used to read the ABO setting.

SYNTAX

int SYS_GetAboTime();

INPUT

None

OUTPUT

= 0 Not activate ABO

= 1 to 15 ABO time in units of 20 seconds

= - 2 No response from KBC

= - 3 VxD not registered

169

Setting ABC (Auto Backlight Control) Status
The ABC (Auto Backlight Control) function is used to sense the ambient light intensity and

automatically turns ON/OFF the backlight. This function is used to enable or disable the ABC

function.

SYNTAX

int SYS_SetABC(int nOnOff);

INPUT

nOnOff = 0 OFF

Other than 0 ON

OUTPUT

= 0 Normal

= -1 Parameter error

= -2 No response from KBC

= -3 VxD not registered

170

Acquisition of ABC (Auto Backlight Control) Status
The ABC (Auto Backlight Control) function is used to sense the ambient light intensity and

automatically turns ON/OFF the backlight. This function acquires the current setting of the ABC

function.

SYNTAX

int SYS_GetABC();

INPUT

None

OUTPUT

0 ABC in OFF status

1 ABC in ON status

2 ABC temporarily disabled

- 2 No response from KBC

- 3 VxD not registered

171

Setting/Acquisition of ABC Threshold
The ABC (Auto Backlight Control) function is used to sense the ambient light intensity and

automatically turns ON/OFF the backlight. This function is used to set marginal levels across

which the backlight changes from ON to OFF or from OFF to ON.

If the readout on the AD converter falls below OnValue, the backlight turns on, and if it exceeds

OffValue, the backlight turns off. If these two levels are identical or too close each other, the

backlight may flicker. To avoid this problem set OnValue so that it is slightly less than OffValue.

SYNTAX

int SYS_SetThresholdOfABC(int OnValue, int OffValue);

INPUT

OnValue = 0 to 255

OffValue = 0 to 255

OUTPUT

= 0 Normal

= - 2 No response from KBC

= - 3 VxD not registered

SYNTAX

int SYS_GetThresholdOfABC(int *OnValue, int *OffValue);

INPUT

OnValue = Pointer to the area in which the ON threshold value is stored.

OffValue = Pointer to the area in which the OFF threshold value is stored.

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

172

Backlight ON/OFF
This function is used to forcibly turn ON or OFF the backlight. If turned ON by this function, the

backlight will remain on until Backlight OFF is triggered by the Backlight OFF function or ABO.

If this function is activated under the ABC control, the ABC will be temporarily disabled, and will

be enabled again when Backlight OFF is triggered by the Backlight OFF function or ABO.

SYNTAX

int SYS_SetBacklight(int nOnOff);

INPUT

nOnOff = 0 OFF

 1 ON

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

173

Acquisition of Backlight Status
This function acquires the current backlight status.

SYNTAX

int SYS_GetBacklight();

INPUT

None

OUTPUT

= 0 Backlight OFF

= 1 Backlight ON

= -2 No response from KBC

= -3 VxD not registered

174

Setting Buzzer Volume
Sets the buzzer volume to one of four levels: Large/Medium/Small/OFF.

SYNTAX

int SYS_SetBuzzerVolume(int nVolume);

INPUT

nVolume = 0 OFF

1 Small

2 Medium

3 Large

OUTPUT

= 0 Normal

= -1 Parameter error

= -2 No response from KBC

= -3 VxD not registered

175

Acquisition of Buzzer Volume
Acquires the buzzer volume as one of four levels: Large/Medium/Small/OFF.

SYNTAX

int SYS_GetBuzzerVolume();

INPUT

None

OUTPUT

0 OFF

1 Small

2 Medium

3 Large

-2 No response from KBC

-3 VxD not registered

176

Acquisition of Device Power Status
Acquires the current power conditions (ON/OFF) of each device.

SYNTAX

int SYS_GetDevicePower(int Device);

INPUT

Device = device to be selected

2 IrDA

3 14-pin I/F

5 8-pin I/F

Other Reserved

OUTPUT

1 Power ON

0 Power OFF

Note:

This function is used to control the power to devices of this system. Never designate parameters

other than those specified on this page.

177

Device Power ON/OFF
Used to turn ON and OFF the power of each device.

SYNTAX

int SYS_SetDevicePower(int Device, int OnOff);

INPUT

Device = device to be selected

2 IrDA

3 14-pin I/F

5 8-pin I/F

Other Reserved

OnOff = ON/OFF setting

0 Turns OFF.

1 Turns ON.

OUTPUT

0 Normal termination

Note:

This function is used to control the power to the devices in this system. Never designate parameters

other than those specified on this page.

178

Software Card Lock
Sets or acquires the Lock/Unlock status of the software-type card lock switch.

This machine has a card lock mechanism that is on the card case to prevent accidental removal

of the card. This mechanism has a software driver that detects the released state of this lock and

executes the appropriate file closing procedure. However, some types of cards, depending on the

card shape, can not be fastened by the lock switch. If this is the case, even if a card is present it

will not be detected. This function is provided to handle this type of card.

To use a card for which the card lock mechanism can not be used, call this function in advance to

set the software lock switch to ON. Now a card can be detected when it is inserted or removed.

SYNTAX

int SYS_SetCardLock(int OnOff);

INPUT

OnOff = Cardlock ON/OFF

0 Unlock

Other than 0 Lock

OUTPUT

0 Normal termination

 Logic Circuit of Software Card-Lock

 Fig. 8.10

PCMCIA

Software Lock

Switch

Card

GA

179

Acquisition of Connector Status
Acquires the connection setting of the I/O Box and AC adaptor.

SYNTAX

int SYS_GetConnectorStatus(int nType);

INPUT

nType = Connector type

0 I/O Box

1 AC adaptor or I/O Box

OUTPUT

= 0 Not connected

= 1 Connected

= -1 Parameter error

180

Key Click Sound ON/OFF
Sets the key click sound to ON or OFF.

SYNTAX

int SYS_SetKeyClck(int OnOff);

INPUT

nOnOff = 0 OFF

Other than 0 ON

OUTPUT

= 0 Normal

= -2 No response from KBC

= -3 VxD not registered

181

Acquisition of Key Click Sound Status
Acquires the key click sound ON/OFF setting.

SYNTAX

int SYS_GetKeyClick();

INPUT

None

OUTPUT

= 0 OFF

= 1 ON

= -2 No response from KBC

= -3 VxD not registered

182

Acquisition of Reboot Reason
Used to acquire the reason the system was rebooted.

SYNTAX

int SYS_GetPowerOnFactor();

INPUT

None

OUTPUT

b0 Power key

b1 Reset button

b2 Alarm

b3 Ring signal

b4 IT-2000 is being set on I/O Box

Note :

If the reset button is pressed the system menu is initiated. This means that an application program

will never acquire the status of "RESET switch being pressed" as the reboot reason.

183

Acquisition of OFF Reason
Acquires the reason that the system was most recently turned OFF.

SYNTAX

int SYS_GetPowerOffFactor();

INPUT

 None

OUTPUT

b0 Power key
b1 Reset switch
b2 Reserved
b3 LBO
b4,b6, b7 Reserved
b5 LB1 timeout (indicates “OFF” by the condition of battery voltage low.)
b8 APO
b9 Software-triggered OFF
b10 to b15 Reserved

Note:

� If the reset switch is pressed the system menu is initiated. This means that an application

program will never acquire the status of "Reset switch being pressed" as the reboot reason.

� If the system is rebooted, the reason it was set OFF will be cleared. Therefore, zero will be

acquired if the reason it was set OFF is read for the first time after rebooting.

� If "Cancellation of the next resume process" is set as the reason the power was set OFF

(including Power key, APO, Software-triggered OFF, etc.), the reason it was set OFF will

be cleared during the reboot process.

184

Setting Cancellation of Next Resume Process
Sets the power-on process (Resume/Boot) for each power OFF reason. The default setting is

Resume On.

SYNTAX

int SYS_SetResumeCondition(int nCondition);

INPUT

nCondition = b0 Power key 0 = Resume On, 1 = Boot
b1 to b7 Reserved
b8 APO 0 = Resume On, 1 = Boot
b9 Software-triggered OFF 0 = Resume On, 1 = Boot
b10 to b15 Reserved

OUTPUT

= 0 Normal

= -1 Parameter error

Note :

With this function the power-on process can be set for each of the reasons the power is turned

OFF: Power key, APO, and Software-triggered OFF. Therefore, if set to "The next power-on

process is boot" from the application, it is necessary to specify all three parts with the

corresponding bits.

185

Acquisition of Cancellation Status of Next Resume Process
Acquires the power-on process setting (Resume On/Boot) for each power-off reason.

SYNTAX

int SYS_GetResumeCondition();

INPUT

None

OUTPUT

b0 Power key 0 = Resume ON, 1 = Boot
b1 to b7 Reserved
b8 APO 0 = Resume ON, 1 = Boot
b9 Software-triggered OFF 0 = Resume ON, 1 = Boot
b10 to b15 Reserved

186

Request of Suspend (Software-triggered OFF)
Used to turn off the system with the software. If there is a need to specify the next boot-up

process, complete "Setting Cancellation of Next Resume Process" beforehand, then call this

function.

SYNTAX

void SYS_PowerOff();

INPUT

None

OUTPUT

None

187

Acquisition of Low Battery Voltage Status
An APM (Advanced Power Management) BIOS has been installed in this terminal. This function is

used to directly refer the hardware conditions which are translated into input signals for the APM

BIOS.

SYNTAX

int SYS_GetLBStatus();

INPUT

None

OUTPUT

b0 Reserved
b1 LB1 event: Main battery voltage low.
b2 LB2 event: Sub-battery voltage low.
b3 LB3 event: Memory card battery voltage low.
b4 to b7 Reserved

188

Setting APO Time
Used to set a time until APO (Auto Power OFF) occurs.

SYNTAX

int SYS_SetApoTime (int nValue);

INPUT

nValue = APO time
 0 Does not cause APO.

1 to 15 Causes APO in the specified-number of minutes plus
30 seconds.

 The actual APO time has an error of +/- 25 seconds.

OUTPUT

= 0 Normal

= -1 Parameter error

Note :

Auto Power OFF will work if the power control function is active. For more information about the

power control function refer to "Setting/Acquisition of Status of Power Control Function".

189

Acquisition of APO Time
Acquires the currently set APO time.

SYNTAX

int SYS_GetApoTime();

INPUT

None

OUTPUT

0 Disable the APO.

1 to 15 Enable the APO in the specified-number of minutes plus 30 seconds.

The actual APO time has an error of +/- 25 seconds.

Note :

Auto Power OFF will work if the power control function is active. For more information about

the power control function refer to "Setting/Acquisition of Status of Power Control Function".

190

Setting Status of Alarm
This function is used to set the alarm so that Int4Ah will be executed at the specified time. If the set

time precedes the currently set RTC (Real Time Clock) time, the alarm will be valid on and after the

following day. If the setup time is later than the currently set RTC time, the alarm will be valid from

the specified day. To make this possible the user has to set the specified interrupt handling routine to

Int4Ah. If this function is not reset using the SYS_ResetAlarm() function, the alarm will activate

(repeatedly set) for each 24-hour period. Call the SYS_SetPowerOnAlarm() function to turn on the

system at the alarm time specified by this function.

SYNTAX

int SYS_SetAlarm(int hour, int min, int sec);

INPUT

hour = hours (in decimal number)

min = minutes (in decimal number)

sec = seconds (in decimal number)

OUTPUT

0 Normal

< 0 Error (error within INT1Ah)

Note:

� This function simply calls INT1AH (AH = 6) internally. Therefore, if this function or INT1Ah

(AH=6) is called and if the alarm has already been set, an error results.

� Note that the validity of parameters as time is not checked.

191

Acquisition of Alarm Setting
This function is used to acquire the current alarm setting made for the RTC (Real Time Clock).

SYNTAX

void SYS_GetAlarm(int *hour, int *min, int *sec);

INPUT

hour = Pointer to the area from which hours is read.

min = Pointer to the area from which minutes is read.

sec = Pointer to the area from which seconds is read.

OUTPUT

None

Note :

This function returns the time data set for the RTC. Note that the validity of data as time is not

checked.

192

Resetting Alarm
This function prohibits an INT4Ah interrupt by internally calling INT1Ah (Ah = 7).

Note that neither the time data set for the RTC is erased nor is the power ON alarm setting for the

SYS_SetPowerOnAlarm() function canceled by this function. If this function is called with the

power ON alarm active, the alarm is temporarily reset. However, the RTC will be automatically set

to active after the power is turned off again to enable the power ON alarm.

The power ON alarm can also be canceled using the SYS_SetPowerOnAlarm() function.

SYNTAX

int SYS_ResetAlarm();

INPUT

None

OUTPUT

0 Normal

< 0 Error

193

Setting/Acquisition of Power ON Alarm
This terminal has a function to automatically turn on the power to the main unit at the specified time.

This function requires the RTC (Real Time Clock) function. Normally, an INT4Ah interrupt will

occur when the setting is being made on the RTC. This function makes it possible to add the

function which turns on the main unit at the desired time.

SYNTAX

int SYS_SetPowerOnAlarm(int OnOff);

INPUT

OnOff = Power On setup

0 Does not turn on the power.

Other than 0 Turns on the power.

OUTPUT

0 Normal

SYNTAX

int SYS_GetPowerOnAlarm();

INPUT

None

OUTPUT

0 = Does not turn on the power.

Other than 0 = Turns on the power.

Note :

The power ON alarm set with this function will be reset if rebooting occurs because the reset

button is pressed or due to the software.

194

Setting/Acquisition of Status of Power Control Function
This terminal has incorporated unique power control functions: the auto power OFF mode and

DOZE mode (CPU low-speed operation mode). Since these functions operate based on monitoring

a period free from operator's concern over a given interval, they have the potential of affecting the

execution performance of high-speed communication programs, including that of IrDA.

To create such a program call this function from it to disable the power control function.

If the power control function is set to disable, the monitoring of a period free from operator's

concern is ceased, resulting in auto-power off not taking place. Since the switch to the DOZE

mode does not occur either, the system can always be operable at high-speed. In short, this function

is useful if auto-power OFF does not take place during processing, or if enhancing the processing

speed.

SYNTAX

int SYS_GetPMStatus(void);

INPUT

None

OUTPUT

0 = Disables power control

1 = Enables power control

SYNTAX

void SYS_SetPMStatus(int OnOff);

INPUT

OnOff = Power control enable/disable

0 Disables power control

1 Enables power control

OUTPUT

None

195

Setting Ke y Click Sound ON
This function is used by application program to turn ON the key click sound. An example of the use

is, when an button image on the LCD screen is touched it turns ON the sound. The sound is the same

tone as those when ten key and keypad are pressed. The setting of key click sound ON/OFF controls

this sound (refer to “Key Click Sound ON/OFF” on page 180.).

SYNTAX

void SYS_MakeKeyClick();

INPUT

None

OUTPUT

None

196

8.6.3 Keypad Library

Overview
The keypad library (Padctrl.vbx) is used to perform key input with the keyboard that is graphically

displayed in the screen. This library can be made available when it is registered as a control on the

application program. This control can be set up according to the specific properties including the

modification of keypad, acquiring and modifying the key acceptance mode, etc.

 Fig. 8.11

Note:

This keypad library (Padctrl.vbx) is a custom control, and can not be used as a separate unit. Prior to

using this library always register it in the dialog of the application program, which has been

generated with a 16-bit compiler, Microsoft C/C++ 7.0A or later release (hereinafter referred to as

"VC") or Visual BASIC 3.0 or later release (hereinafter referred to as "VB").

The keypad library (Padctrl.vbx) must be located in the same directory as the generated application

program or in the directory to which a known path is established.

Keycode
The keycode format generated by SendMessage (API to publish a message to Windows procedures)

follows those which are included in the keycode table.

Timing of accepting a keycode
A keycode will be accepted at the timing when the inside of the keypad is touched. Therefore, if the

control is outside the focus in which WM_CHAR can be processed at this timing, the issued

keycode will be made invalid. So, the application developer should design such a program that the

control is placed in the focus in which the processing of WM_CHAR is permitted at all times.

197

Input acceptance mode
There are two acceptance modes for key input.

� Down acceptance mode

When the pen is down on the keypad, the touched area changes to reverse video, and the

corresponding keycode is generated. The reverse video area will return to normal when the pen is

up. Even if the pen runs outside the corresponding key area in the mid course, the reverse video

area continues as-is.

� Up acceptance mode

When the pen is down on the keypad, the touched area changes to reverse video. If the pen runs

outside the firstly touched area, the first reverse video area is canceled and a new area will

change to reverse video. When the pen is up, a keycode corresponding to the current reverse

video area will be generated. When the pen is up outside the keypad, the current key input

operation will be invalidated.

Toggle function
When the Expansion button on the keypad (upper case alphabets or lower-case alphabets pad) is

touched, the expansion keypad becomes the active pad. This keypad returns to the previous screen

after only a single key input is made, unless the touched area is assigned no keycode.

Repeat function
The repeat function allows all the successive key inputs before the pen is up to be accepted in a

lump. This function is valid only in the Down acceptance mode.

Key click sound
A key sensing sound is always generated whenever the keypad is touched (Down operation)

irrespective of the current input acceptance mode. However, it is of course on this keypad the valid

keycodes should have been set. In the Up acceptance mode if the pen is down to an invalid key area

and it runs over another valid key area, the key sensing sound will not be generated.

How to use with a VC application
In order to develop an application program that utilizes the keypad library with the VC, it is

necessary to register the keypad library to AppStadio. The following example shows a screen of

Microsoft Visual C++ver. 1.51.

198

(1) Initiate AppStadio, then select "File"- "InstallControls".

Fig. 8.12

(2) Move to the directory where the keypad library is placed and select "padctrl.vbx", then click on

 the "Install"button. When "PADCTRL.VBX"is displayed in the "Installled"column, click on the

"OK" button.

 Fig. 8.13

199

(3) A new button is added in the lower section of the toolbox. However, if other controls have been

registered already, the left hand-side figure will include more buttons.

 Fig. 8.14

With the above procedure registration of the keypad to AppStadio is completed.

Explained next is the method of registering the keypad in the dialog. First, add a dialog to register

the keypad.

(1) Initiate AppStadio and select "Resource" - "New".

Fig. 8.15

200

(2) As the following dialog is displayed, select "Dialog" and click on the "OK" button.

 Fig. 8.16

With the above operation the dialog is added as a resource.

(3) Next, click on the keypad button (as shown in the lower right of the left hand-side figure) of the

 tool box to the pressed-in position and click inside the dialog. This makes the keypad inserted

 in the dialog.

Fig. 8.17

201

(4) Modify the keypad size so that all keys can appear within the screen.

Fig. 8.18

(5) Subsequently, layout the necessary controls such as the edit box, etc. on the dialog.

As the screen size of this system is 384 x 192 (pixels), layout the controls so they can be

accommodated in this range.

Fig. 8.19

202

Note:

The keypad library will transmit characters to the control which is focused at. Accordingly, if the

focus is placed in other control than the edit box, click on the edit box or move the focus over the

edit box with the program that is using SetFocus(), etc.

How to use with VB application
In order to develop an application program that utilizes the keypad library with the VB, it is

necessary to register the keypad library to Visual BASIC. This operation differs between VB3 and

VB4, each of which is explained in the following.

(1) In case of VB4, select "Custom Controls..." from the "Tools" menu.

Fig. 8.20

203

Where VB3 is used, select "Add File..." from the "File" menu.

Fig. 8.21

(2) When the following dialog appears for VB4, click on the "Browse..." button.

Fig. 8.22

204

(3) When the following dialog is displayed, move to the directory where the keypad library is

placed and select "padctrl.vbx" as the file name, then click on the "OK" button.

 Fig. 8.23

In the case of VB3, the following dialog will appear instead of the dialog of (2). Then move to

the directory where the keypad library is placed and select "padctrl.vbx" as the file name, then

click on the "OK" button.

Fig. 8.24

205

(4) In the case of VB4, clicking on the "OK" button makes the previous dialog restored.

Make sure that the check box at the right of "PADCTRL.VBX" is checked, then click on the

"OK" button.

 Fig. 8.25

(5) The left hand-side figures show the results where a new button

 has been added in the lower section of the toolbox. The left one

 is an example for VB4, and the right one is an example for

 VB3, respectively. If other controls have been registered

 already, the left hand-side figures will include more buttons.

This registration is also possible by dragging and dropping the

keypad library icon in the tool box.

 Fig. 8.26

 Fig. 8.27

With the above procedure registration of the keypad to VB is completed.

206

Explained next is the method of registering the "keypad" in the dialog.

(1) First double-click on the "keypad" button

 (the lower left button in the left hand-side

 figure), and the "keypad" is inserted as shown

 in the left hand-side figure.

 Fig. 8.28

(2) Then modify the size of the "keypad" so that

 all the keys are accommodated in the screen.

 Fig. 8.29

207

(3) Subsequently, layout the optional controls such as the edit box, etc. properly in the dialog.

Because the size of the IT-2000 display is 384 x 192 (pixel), layout them so that they can

be fit within the range.

 Fig. 8.30

Note:

� The keypad library will transmit characters to the control which is focused at. Accordingly, if the

focus is placed in other control than the edit box, click on the edit box or move the focus over the

edit box with the program that is using SetFocus(), etc.

� Always set "1" to VbProj. If this setup is not made, 2-byte characters can not be transmitted

properly.

208

Explanation of properties

List of properties

Property Name Description
PadStatus Key acceptance property Specifies Up or Down acceptance.
PadShow Keypad display/non-display property Specifies display/non-display of the

keypad.
KeyNo Expansion key number property Specifies which number of key is

registered in the expansion keypad.
ExtNo Expansion keypad number property Specifies whether the key is registered to

EXT1 pad or EXT2 pad.
KeyCode Expansion keycode property Specifies the keycode of keys to be

registered.
Ext1Data1 -
Ext1Data48
(48 pieces

Expansion key image property
(EXT1)

Specifies the Picture Handle of the
registered key (for EXT1 pad).

Ext2Data1 -
Ext2Data48
(48 pieces

Expansion key image property
(EXT2)

Specifies the Picture Handle of the
registered key (for EXT2 pad).

ExtPad Expansion pad operation property Action property that initiates the
operation of registering, deleting and
deleting-all the keys to/from the EXT1 or
EXT2 pad.

Picture Handle: This is created from a bitmap file in the both cases of VC and VB.

 The bitmap should be created from two colors and to a size of 32 x 24 dots.

Key acceptance property
Function This is a property to designate the key input acceptance mode.
Property name PadStatus
Type short
Value 0 = Down acceptance (default)

1 = Up acceptance

Format <In case of VC>
CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty("PadStatus", 0 or 1);

<In case of VB>
Padctrl1.PadStatus = 0 or 1

209

Keypad display/non-display property
Function This is a property to switch between display and non-display of the keypad.
Property name PadStatus
Type short
Value 0 = non-display

1 = display (default)

Format <In case of VC>
CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty("PadShow", 0 or 1);

<In case of VB>
Padctrl1.PadShow = 0 or 1

Expansion key number property
Function This is a property to set up the expansion key number to be registered or

deleted to/from the expansion pad.
Property name KeyNo
Type short
Value Integer from 0 to 47
Format <In case of VC>

CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty("KeyNo", 0 to 47);

<In case of VB>
Padctrl1. KeyNo = 0 to 47

Expansion keypad number property
Function This is a property to select the objective expansion key pad to/from which

the keys are registered or deleted.
Property name ExtNo
Type short
Value 1 = EXT1 pad

2 = EXT2 pad
Format <In case of VC>

CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty("ExtNo", 1 or 2);

<In case of VB>
Padctrl1. ExtNo = 1 or 2

210

Expansion keycode property
Function This is a property to set up the keycode of the expansion key to be registered.
Property name KeyCode
Type short
Value Keycode to be set

Format <In case of VC>
CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty(“KeyCode”, keycode);

<In case of VB>
Padctrl1. KeyCode = keycode

Expansion key image property
Function This is a property to set up the key image of the expansion key to be

registered.
Property name Ext1Data1 - Ext1Data48 (48 pieces)

Ext2Data1 - Ext2Data48 (48 pieces)

Type HPIC
Value Picture handle of the bitmap

Format <In case of VC>
CVBControl* m_PadCtrl;

m_PadCtrl->SetPictureProperty(Ext1Data1, picture handle) ;
<In case of VB>

Padctrl1. Ext1Data1 = LoadPicture(bitmap file name)

Expansion pad operation property
Function This is an action property to register, delete or delete-all the data to/from the

expansion pad.
Property name ExtPad
Type short
Value 1 = Register

2 = Delete
3 = Delete all

Format <In case of VC>
CVBControl* m_PadCtrl;
m_PadCtrl->SetNumProperty("ExtPad", 1 or 2 or 3);

<In case of VB>
Padctrl1. ExtPad = 1 or 2 or 3

211

Example of expansion pad operation

� Registration of expansion key pad

 <In case of VC>

void Cclass::SetProp(void)

{

HBITMAP hBmp;

PIC pic;

HPIC hPic;

// Loads the bitmap from resouce

hBmp = LoadBitmap(AfxGetInstanceHandle(), "bitmap resource name");

pic.picData.bmp.hbitmap = hBmp;

pic.picType = PICTYPE_BITMAP;

hPic = AfxSetPict(NULL, &pic); // Creates HPIC.

m_PadCtrl->SetPictureProperty("Ext1Data1",hPic);

 // Registration of picture property

AfxReferencePict(hPic, TRUE); // Reference count operation of HPIC

m_PadCtrl->SetNumProperty("KeyNo",0);

 // Registration of Key No. (0-47)

m_PadCtrl->SetNumProperty("ExtNo", 1);

 // Registration of expansion pad No. (1-2)

m_PadCtrl->SetNumProperty("KeyCode", 65);

 // Registration of keycode

m_PadCtrl->SetNumProperty("ExtPad", 1);

}

<In case of VB>

Private Sub Command1_Click()

Padctrl1. KeyNo = 0

Padctrl1. ExtNo = 1

Padctrl1. Ext1Data1 = LoadPicture("d: �work�ocx�zen.bmp")

Padctrl1. KeyCode = 65

Padctrl1. ExtPad = 1

End Sub

212

� Deletion of expansion key pad

<In case of VC>

void Cclass::DeleteProp(int KeyNo, int ExtNo)

{

m_PadCtrl->SetNumProperty("KeyNo", 0); // Registration of Key No.

 (0 to 47)

m_PadCtrl->SetNumProperty("ExtNo", 1); // Registration of expansion

pad No. (1 to 2)

m_PadCtrl->SetNumProperty("ExtPad", 2);

}

<In case of VB>

Private Sub Command2_Click()

Padctrl1. KeyNo = 0

Padctrl1. ExtNo = 1

Padctrl1. ExtPad = 2

End Sub

� Deletion of all expansion pads

<In case of VC>

void Cclass::OnAlldelete()

{

m_PadCtrl->SetNumProperty("ExtNo", 1); // Registration of

expansion pad No. (1 to 2)

m_PadCtrl->SetNumProperty("ExtPad", 3);

}

<In case of VB>

Private Sub Command3_Click()

Padctrl1. ExtNo = 1

Padctrl1. ExtPad = 3

End Sub

213

8.6.4 OBR Library

Overview
The OBR library is used to control the OBRs (Barcode Reader) from application programs

developed by the user with the C language or Visual BASIC. It supports the following two OBRs :

DT-9650BCR : Pen-type barcode reader

DT-9656BCR : CCD barcode reader

Note about the Libraries
This library consists of the following three files. Any application program that uses this library

should include obrlib.h in the corresponding source file. Constants that are passed to the library

functions and their prototypes are defined in the following header files.

OBRLIB.H Header file for the OBR library
LIBOBR.LIB Library to call OBRLIB.DLL from C language.
OBRLIB.DLL OBR library

OBRLIB.DLL is downloaded to the same directory of an application program or to the directory

of Windows when it is used. The type of OBR to use is specified as parameter when OBR_Open is

called.

No. Function Description
216 OBR_Open Initialization of COM port and power on
217 OBR_Close Release of COM port and power off
218 OBR_Send Transmission of command to OBR
219 OBR_Stat Acknowledgment of received data
220 OBR_Read Read of the received data
221 OBR_Clear Invalidation of codes in reception buffer
222 OBR_SetUserEvent Event definition issued when reception is completed.

The OBRLIB.DLL uses the system library (SysCall.DLL) to turn on and off the power supply of the

COM port. To use this library, an environment which allows the use of SysCall.DLL must be

available.

214

Reception Buffer
This library uses two reception buffers, as shown below, so that during the processing (read) of one

of the received barcodes the next barcode can be successfully received.

Fig. 8.31

The following explains the operation sequence by which codes are put into the reception buffer.

� When the first barcode is received, it will be temporarily stored in Buffer A.

� When the second barcode is received, it will be temporarily stored in Buffer B.

� When the third next barcode is received, it will be temporarily stored in Buffer A.

� When the fourth barcode is received, it will be temporarily stored in Buffer B.

With this library the received barcodes are distributed alternatively to the two buffers as described

above. If one of the received barcodes is not read, it will be overwritten by a new barcode.

This necessitates any received data to be acknowledged with the OBR_Stat function or

OBR_SetUserEvent function, then read using the OBR_Read function after acknowledgment.

Note:

� If programming with this library, first make the OBR_Open function call. The OBR_Open

function will turn on the power supply to the COM port and initialize it. It enables the operation

of other functions (OBR_Send, OBR_Read, etc.) and maintains the power supply to the COM

port. Therefore, always call the OBR_Close function so that the COM port is turned off and

freed before completing the use of the OBR (i.e. application).

� DT-9650BCR and DT-9656BCR are not compatible with each other. The OBR_Send function

will execute necessary processes according to OBR type specified by the OBR_Open function.

Values to be sent to OBR will not be the same for both the OBR models. Refer to each reference.

� DT-9650BCR and DT-9656BCR have an EEPROM in which the setup contents can be written

and stored. This eliminates the need to perform setup each time the power is turned on.

Buffer : A

Buffer : B

215

Data Format
The reception data format is defined as follows:

Barcode O

Fig. 8.32

216

List of Available Functions
Page. Function Description
216 OBR_Open Initialization of COM port and power on
217 OBR_Close Release of COM port and power off
218 OBR_Send Transmission of command to OBR
219 OBR_Stat Acknowledgment of received data
220 OBR_Read Read of the received data
221 OBR_Clear Invalidation of codes in reception buffer
222 OBR_SetUserEvent Event-code definition issued when reception is completed.

Initialization of OBR
Initializes the COM port to establish a connection with the OBR, and turns on the power to the COM

port.

SYNTAX

#include "obrlib.h"

int FAR PASCAL _export OBR_Open(int iOBRtype);

INPUT

iOBRType = DT-9650

= DT-9656

OUTPUT

0 = Normal end.

1 = iOBRType is not correct.

-1= Open error.

Note :

When programming with this OBR library, first make this OBR_Open function call to initialize the

COM port and the OBR.

217

Release of COM Port
Releases the COM port and turns off the power to the COM port.

SYNTAX

#include "obrlib.h"

void FAR PASCAL _export OBR_Close();

INPUT

None

OUTPUT

None

Note :

Call this function if completing the use of the OBR (i.e. terminating the application program).

218

Transmission of Command
Transmits a command represented by a single ASCII code to the OBR. Various options including

"Readout mode", "Data transfer format", etc., can be set for this transmission. This setup does not

have to be made each time the power is turned on if it is written in the EEPROM.

For information about the setup procedure refer to "Setting Operation Mode/DT-9650BCR"

on page 223.

SYNTAX

#include "obrlib.h"

int FAR PASCAL _export OBR_Send(char far *pszcmd);

INPUT

pszcmd = pointer to command buffer (refer to the Command List.)

OUTPUT

= 0 : Normal termination

= 1 : Transmission error

Note :

This is to transfer command to OBR. For detail of each OBR command, refer to operation mode

setting of each OBR command.

219

Acknowledgment of Received Data
Validates barcode data in the reception buffer of the Library. If data is not received completely as

barcode data after the validation, it will be acknowledged as invalid date.

SYNTAX

#include "obrlib.h"

int FAR PASCAL _export OBR_Stat();

INPUT

None

OUTPUT

The absolute value shows the number of characters in the received barcode (not

including a CR). The sign indicates whether the data is a complete barcode or not.

< 0 Incomplete barcode

> 0 Complete barcode

220

Readout of Received Data
Acquires the first barcode in the reception buffer and writes it to the specified buffer. The reception

data SYNTAX is as follows:

 Barcode O

Fig. 8.33

SYNTAX

#include "obrlib.h"

int FAR PASCAL _export OBR_Read(void far *pBuf);

INPUT

pBuf = Pointer to the buffer that stores the received barcode

OUTPUT

The absolute value shows the number of characters in the received barcode.

The sign indicates the validity of the barcode.

> 0 Length of received data.

= 0 Either the reception acknowledgment is not performed (OBR_Stat function is

not used) or there is no received data.

< 0 Valid data does not exist.

Note :

Before reading a barcode using this function, acknowledge reception with the OBR_Stat function.

Note that received barcode data will be cleared from the reception buffer after it has been read by the

OBR_Read function. This means that the following barcode can be read immediately after the

preceding one, even if there is an error, has been read.

221

Invalidating Code in Buffer
Invalidates a barcode in the reception buffer and clears the reception buffer.

SYNTAX

#include "obrlib.h"

void FAR PASCAL _export OBR_Clear();

INPUT

None

OUTPUT

None

222

Setting event of reception completion
When a barcode data is received completely, specified message can be sent as user event to the

specified handle.

This library will send a message to specified window handle using the SendMessage API. Specified

hWnd, uMsg, wParam, lParam are used as parameter for the SendMessage API.

SYNTAX

#include “obrlib.h”

void FAR PASCAL _export OBR_SetUserEvent(HWND hWnd, UINT uMsg, WORD

 wParam,LONGlParam);

INPUT

hWnd = Destination window handle for message to be sent.

uMsg = User event message

wParam = WORD parameter of user event

lParam = LONG parameter of user event

OUTPUT

None

223

Setting Operation Mode / DT-9650BCR

Overview
On this OBR various settings, as listed below, can be made through command transmission.

For a list of the actual commands refer to the Command List on page 225.

1. Specifying the number of read digits

2. Specifying the CODE39/NW-7 ICG code

3. Readability of code

4. Data transfer SYNTAX

5. Specifying the buzzer activation and LED ON modes

6. Specifying the output of BEL if decoding is not possible

7. Specifying the scanning mode

8. Specifying the sleep mode/stop mode

9. Write in the EEPROM

Transmission of Command
There are two types of commands: normal commands and expanded commands. They must

be transmitted according to the following procedure.

� Transmission of normal commands

In order to transmit a command other than the expanded commands included in the Command

List use the corresponding command symbol without modification.

Example: To set all codes to "Permit read" with the "Readability of code"

OBR_Send (“X”);

� Transmission of expanded commands

To transmit an expanded command included in the Command List follow the procedure below.

1. First transmit the "Transmission start" command from the expanded commands.

2. Transmit the objective expanded command.

3. After the objective expanded command has been transmitted, transmit the "Transmission

complete" command.

224

Example: To set the CODE39 C/D to "Prevent check (without changing the transfer

function)" with the corresponding expanded commands

OBR_Send (“u”);

OBR_Send (“A”);

OBR_Send (“v”);

Power-save Mode Control Command
Used to control the power-save mode of the OBR. See the following diagram.

Example

Fig. 8.34

Writing Set Values to EEPROM
The OBR is provided with a function to write the current setting values to EEPROM.

To do this, transmit the 'y' command. If this is not done, other commands that have been transmitted

previously to the 'y' command will not be written to EEPROM. As a result, they will be erased when

the power is turned off and the settings specified by these commands will not be valid the next time

the power is turned on. However, the following commands can not be used to write a setting value to

EEPROM.

One period of buzzer activation/LED ON Command : L
Enable scanning Command : H
Disable scanning Command : I
Special mode (disable scanning after one normal reading) Command : U
Request sleep mode Command : o
Request stop mode Command : p
Expanded command control: Transmission start Command : u
Expanded command control: Transmission complete Command : v

Readable condition

Stop mode Sleep Mode

SW input

Command “H”

Command “U”
Command “o”Command “p”

SW input

225

Command List (Italic and bold letters indicate default value)

1 Specifying the number of read digits
No. of digits Command No. of digits Command No. of digits Command

1 to 42 ^P 16 (space) 32 0
1 ^Q 17 ! 33 1
2 ^R 18 “ 34 2
3 ^S 19 # 35 3
4 ^T 20 $ 36 4
5 ^U 21 % 37 5
6 ^V 22 & 38 6
7 ^W 23 ‘ 39 7
8 ^X 24 (40 8
9 ^Y 25) 41 9
10 ^Z 26 * 42 :
11 ^[27 +
12 ^� 28 ,(comma)
13 ^] 29 -
14 ^^ 30 .(period)
15 ^_ 31 /

Item Command Default
Less than one ICG character = Yes2.

Specify
CODE39/
NW-7 ICG

Less than eight ICG characters ? --

All codes Enable read
 Disable read

X
x

--
--

CODE39 Enable read
 Disable read

A
a

Yes
--

NW-7 Enable read
 Disable read

B
b

Yes
--

WPC Enable read
 Disable read

C
c

Yes
--

2 of 5 (Industrial/Standard)
 Enable read
 Disable read

D
d

Yes
--

ITF Enable read
 Disable read

E
e

Yes
--

CODE11 Enable read
 Disable read

F
f

--
Yes

CODE93 Enable read
 Disable read

G
g

--
Yes

CODE128 Enable read
 Disable read

W
w

--
Yes

3.
Readability of
code

WPC add on Disable read
 Enable read
 Forced read

l
m
n

Yes
--
--

4.
Data transfer
format

CODE39
 Enable full-ASCII conversion
 Disable full-ASCII conversion
 Transfer start/stop codes
 Not transfer start/stop codes

h
i
Z
z

--
Yes
--

Yes

226

NW-7 start/stop code
 Transfer
 Not transfer
 Change codes to uppercase characters
 Change codes to lowercase characters
 Enable transfer of ABC code
 Disable transfer of ABC code

[
{
q
r
j
k

Yes
--

Yes
--
--

Yes
C/D (CODE39/NW-7/2of5/CODE11)
 Disable check
 Enable transfer of check
 Disable transfer of check

R
S
T

Yes
--
--

Readout CODE ID Not transfer
 Transfer

P
Q

Yes
--

 Enable buzzer/LED ON after normal read
 Disable buzzer/LED ON after normal read
 Enable buzzer/LED ON for one time

J
K
L

Yes
--
--

5.
Specify
buzzer
activation and
LED ON
modes

 LED OFF when command awakes from sleep
 mode
 LED ON when command awakes from sleep mode

s

t

Yes

--

6.
Specify output
of BEL when
the code can
not be
decoded

 Output enable
 Output disable

M
N

--
Yes

7.
Specify
scanning mode

 Scanning enable
 Scanning disable
 Special mode
 Scanning disable after one normal read

H
I

U

Yes
--

--
8.
Specify
sleep
mode/stop
mode

 Request sleep mode
 Request stop mode

o
p

--
--

9.
Write to
EEPROM

 Write defaults
 Write current setting values

Y
y

--
--

10.
Modify
settings

� Switch to the setting values currently
 stored in EEPROM

O --

� Expanded command control
 Transmission start
 Transmission complete

u
v

--
--

11.
Expanded
commands

� CODE39 C/D
Disable check (without changing the transfer
 function)
 Enable check/Transfer
 Enable check/Not transfer
 Disable check/Not transfer
 Disable check/Transfer

A

B
C
Y
Z

--

--
--
--

Yes

227

� NW-7 C/D
Disable check (without changing the transfer
 function)
 Enable check/Transfer
 Enable check/Not transfer
 Disable check/Not transfer
 Disable check/Transfer

D

E
F
[
�

--

--
--
--

Yes

� 2 of 5 C/D
Disable check (without changing the transfer
 function)
 Enable check/Transfer
 Enable check/Not transfer
 Disable check/Not
transfer
 Disable check/Transfer

G

H
I
]
^

--

--
--
--

Yes

� CODE11 C/D
 Enable transfer of check (1)
 Disable transfer of check (1)
 Enable transfer of check (2)
 Disable transfer of check (2)

J
K
L
M

--
Yes
--
--

� CODE93 C/D
 Enable transfer of no check
 Disable transfer of no check
 Disable transfer of check
 Enable transfer of check

N
O
P
Q

-
--

Yes
--

� CODE128 C/D
 No check (without changing the transfer
 function)
 Disable transfer of check
 Disable transfer of no check
 Enable transfer of no check
 Disable transfer of check
 Enable transfer of check

S

T
U
V
W
X

--

Yes
--
--
--
--

228

Setting Operation Mode / DT-9656BCR

Overview
On the OBR various settings, as listed below, can be made through command transmission.

For a list of actual commands refer to the Command List on page 229.

 1. Readability of code

 2. Adding a readable code

 3. Data transfer SYNTAX

 4. Condition for the least significant digits

 5. Specifying the buzzer activation mode

 6. Specifying the LED ON mode

 7. Read mode

 8. Read time

 9. Mark/base of barcode

10. Redundant read

11. Use of Length CODE

12. Specifying write to EEPROM

Transmission of Command
Commands must be transmitted using the OBR-Send function.

Example: To specify "Read all codes"

OBR_Send ("A0");

Writing Set Values to EEPROM
The OBR is provided with a function to write the current setting values to EEPROM. To do this,

transmit the 'Z2' command.

If this is not done, other commands that have been transmitted previously to the 'Z2' command will

not be written to EEPROM. As a result, they will be lost when the power is turned off and the

settings specified by these commands will not be valid the next time the power is turned on.

Example: To specify "Read all codes" and write to EEPROM

OBR_Send ("A0");

OBR_Send ("Z2");

229

Command List
Item Command Default

 Read all codes A0 --
 UPC only J1 --
 UPC + 2 digits of supplemental only J2 --
 UPC + 5 digits of supplemental only J3 --
 EAN only J4 --
 EAN + 2 digits of supplemental only J5 --
 EAN + 5 digits of supplemental only J6 --
 DTF only J7 --
 ITF only J8 --
 CODE39 only A2 --
 NW-7 (CODABAR) only A3 --
 CODE93 only A5 --
 CODE128 only A6 --

1.
Readability
of code

 MSI/Plessey only A7 --
 UPC Enable read R1 Yes
 UPC + 2 digits of supplemental Enable read R2 --
 UPC + 5 digits of supplemental Enable read R3 --
 EAN Enable read R4 Yes
 EAN + 2 digits of supplemental Enable read R5 --
 EAN + 5 digits of supplemental Enable read R6 --
 DTF Enable read R7 Yes
 ITF Enable read R8 Yes
 CODE39 Enable read B2 Yes
 NW-7 (CODABAR) Enable read B3 Yes
 CODE93 Enable read B5 --
 CODE128 Enable read B6 --

2.
Adding
readable
code

 MSI/Plessey Enable read B7 --
� CODE39
 Not calculate C/D
 Calculate C/D
 Transfer C/D
 Not transfer C/D
 Not transfer start/stop code
 Transfer start/stop code

C0
C1
C2
C3
D0
D1

Yes
--

Yes
--
--

Yes

� NW-7 start/stop code
 Not transfer
 Transfer ABCD/TN*E
 Transfer abcd/tn*e
 Transfer ABCD/ABCD
 Transfer abcd/abcd

F0
F1
F2
F3
F4

--
--
--
--

Yes

3.
Data
transfer
format

� ITF/DTF C/D
 Not calculate C/D
 Calculate C/D
 Transfer C/D
 Not transfer C/D

G0
G1
G2
G3

Yes
--

Yes
--

230

� UPC-A
 13 digits: Transfer all
 12 digits: Not transfer "0" header for adjusting the
 number of digits
 12 digits: Not transfer C/D
 11 digits: Not transfer C/D and "0" header for

 adjusting the number of digits

E2
E3

E4
E5

Yes
--

--
--

� UPC-E
 8 digits: Transfer all
 7digits: Not transfer "0" header for adjusting the
 number of digits
 7 digits: Not transfer C/D
 6 digits: Not transfer C/D and "0" header for
 adjusting the number of digits
 Acquire only system number "0"
 Acquire both system numbers "0" and "1"

E6
E7

E8
E9

E0
E1

--
--

Yes
--

Yes
--

4.
Specify
the least
significant
digit

� CODE39, NW-7: 1 digit, ITF: 2 digits
 Disable read
 Enable read

H2
H3

Yes
--

� Buzzer of successful read
 Disable buzzer

 Frequency 1 KHz
 Frequency 2 KHz

 Frequency 4 KHz

W0
W1
W2
W3

--
--
--

Yes

� Buzzer-ON period
 50 msec

 100 msec
 250 msec

 500 msec

W7
W4
W5
W6

--
--

Yes
--

5.
Specify
buzzer
activation
mode

� Buzzer volume
 Small

 Medium
 Large

 Maximum

T3
T2
T1
T0

--
--
--

Yes
6.
Specify
LED ON
mode

� ON at successful reading
 Disable
 Enable
 Period of ON : 0.25 sec
 Period of ON : 0. 5 sec
 Period of ON : 0.75 sec
 Synchronize LED and buzzer

T4
T8
T5
T6
T7
T9

--
Yes
--
--
--

Yes
7.
Read
mode

 One-shot read
 Multiple reads
 Continuous read

S0
S1
S7

--
Yes
--

231

8.
Read time

 Infinite
 2 sec
 4 sec
 6 sec
 8 sec
 10 sec
 15 sec
 20 sec

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

Yes
--
--
--
--
--
--
--

9.
Contrast
of normal
/reverse

� Normal contrast
� Both normal/reverse contrast

V2
V4

Yes
--

10.
No. of
verifications

 No verification
 Verification twice
 Verification three times
 Verification four times

X0
X1
X2
X3

--
Yes
--
--

� UPC-A
 Not transfer
 Transfer

2A
3A

Yes
--

� UPC-A with supplemental
 Not transfer
 Transfer

2B
3B

Yes
--

� UPC-E
 Not transfer
 Transfer

2C
3C

Yes
--

� UPC-E with supplemental
 Not transfer
 Transfer

2D
3D

Yes
--

� EAN-13
 Not transfer
 Transfer

2E
3E

Yes
--

� EAN-13 with supplemental
 Not transfer
 Transfer

2F
3F

Yes
--

� EAN-8
 Not transfer
 Transfer

2G
3G

Yes
--

� EAN-8 with supplemental
 Not transfer
 Transfer

2H
3H

Yes
--

� CODE39
 Not transfer
 Transfer

2I
3I

Yes
--

� NW-7
 Not transfer
 Transfer

2J
3J

Yes
--

� DTF
 Not transfer
 Transfer

2K
3K

Yes
--

11.
Use of
Length
CODE

� ITF
 Not transfer
 Transfer

2L
3L

Yes
--

232

� CODE93
 Not transfer
 Transfer

2M
3M

Yes
--

� CODE128
 Not transfer
 Transfer

2N
3N

Yes
--

� MSI/Plessey
 Not transfer
 Transfer

2O
3O

Yes
--

12.
Specify
write to
EEPROM

Z2 --

233

8.6.5 YMODEM Library

Overview
This library is used to transfer files from Windows applications using the YMODEM/bat protocol.

The YMODEM library consists of a group of the following files.

YMODEM.H Header fil e for system library (for C language)

LibYMOD.LIB YMODEM library for C language (for C language)

YMODEM.DLL Main program of the YMODEM library

Relations between the files are summarized as follows. When developing your application program

with the C language, never fail to link LibYMOD.LIB with the developed source program. This

LibYMOD.LIB will automatically call YMODEM.DLL, which is the main program of the system

library, at each execution of the program. Visual BASIC can directly call this DLL by means of a

declaration.

 Fig. 8.37

List of libraries
The YMODEM library supports the following functions:

Function name Description Page
OpenYMODEM Opening the YMODEM library 234
SendByYMODEM File transmission with the YMODEM/bat protocol 235
SendByYMODEMforVB File transmission with the YMODEM/bat protocol

(for Visual Basic)
235

RecieveByYMODEM File reception with the YMODEM/bat protocol 236
SetCommForYMODEM Setting up communication parameters 237
CloseYMODEM Closing the YMODEM library 238

Application Program
written by VC

Application Program
written by VB

LibYMOD.LIB

YMODEM.DLL
Other PC

234

Error codes
Each function of this library will return the following values as the error code.

Error code Description
1 Dialog box creation error, etc.
3 Transmission file not exist
4 Reception file creation error
5 Communication time-out
7 Reception file write error
8 Communication API error of Windows

OpenYMODEM
This function should be called prior to using the YMODEM library.

When this function is called, the COM port will be initialized to the following default values; 9600

bps, NO PARITY, 8 data bits, and 1 stop bit. When modifying the communication parameters

including the baud rate, call the SetCommForYMODEM () function after calling this function.

SYNTAX:

#include "ymodem.h"

short WINAPI _export OpenYMODEM(short nPort)

INPUT:

 nPort = COMport number

OUTPUT:

 = 0 Normal termination

 = Other Refer to the error code table.

235

SendByYMODEM
This function is used to transmit a file by means of the YMODEM/bat protocol. Before this function

is called, the OpenYMODEM function must have been called.

SYNTAX

#include "ymodem.h"

short WINAPI _export SendByYMODEM(short iPkt, short nFiles,

LPSTR *sPath, BOOL bFullFileName, BOOL bFindSubDir)

short WINAPI _export SendByYMODEMforVB(short iPkt, short nFiles,

LPSTR *sPath, BOOL bFullFileName, BOOL bFindSubDir)

INPUT

iPkt Packet size (1024 or other)
nFiles Number of transmitted files
FileName Pointer to the transmitted file name array

File names must be specified by their full pathnames.
bFullFileName TRUE: Use, FALSE: Not use

Specify whether to use the source-side full pathname as the
transmitted file name.

bFindSubDir TRUE: Use recursive call, FALSE: Not use recursive call
When a wild card is used for the transmitted file name, files under
the sub-directory can be the objective of the file transmission.
If, for example, the transmitted file is D:�TEST�*.DAT,
a directory, D:�TEST�SUB�TEST.DAT is also included in
the objective of transmission.

OUTPUT

 = 0 Normal termination

 = Other Refer to the error code table.

Note:

� Into the transmitted file name array store the FAR addresses to the file name character strings.

LPSTR SndFil[100] = { "c: ��config.sys", "c: ��autoexec.bat", 0 };

� Whether TRUE or FALSE has been defined in windows.h. If calling this library (DLL) from

Visual BASIC, specify True/False as TRUE/FALSE.

� If using VB3 as the development language, SendByYMODEM can not be called. This is

because VB3 does not permit the DLL to refer to the character string array. To solve this

problem a VB3-dedicated function, SendByYMODEMforVB, is provided.

236

RecieveByYMODEM
This function is used to receive a file by means of the YMODEM/bat protocol. Before this function

is called, the OpenYMODEM function must have been called.

SYNTAX

#include "ymodem.h"

short WINAPI _export RecieveByYMODEM(LPCSTR cDirectory)

INPUT

cDirectory = Received file storage directory (by full pathname)

OUTPUT

= 0 Normal termination

= Other Refer to the error code table.

237

SetCommForYMODEM
This function is used to set up the communication parameters (baud rate, parity, and stop bit) to be

used by the YMODEM library.

Before this function is called, the COM port must have been opened by the OpenYMODEM

function.

SYNTAX

#include "ymodem.h"

short WINAPI _export SetCommForYMODEM(long lBaud, short iParity,

 short iStopBits)

INPUT

lBaud = Select from 1200, 2400, 4800, 9600 (default),14400, 19200, 38400,

57600, and 115200 bps.

iParity = Select from NOPARITY(default), ODDPARITY, and

EVENPARITY.

iStopBits = Select either ONESTOPBIT(Default) or TWOSTOPBITS.

OUTPUT

= 0 Normal termination

= Other Refer to the error code table.

Note:

� NOPARITY/ODDPARITY/EVENPARITY/ONESTOPBIT/TWOSTOPBITS have been

defined in windows.h as the following values. If calling this library (DLL) from Visual Basic,

directly specify their values.

#define NOPARITY 0

#define ODDPARITY 1

#define EVENPARITY 2

#define ONESTOPBIT 0

#define TWOSTOPBITS 2

� If a value not permitted for each parameter is specified, the default value of the item will be

used. If, for example, "123" is specified as the baud rate, it does not cause an error, but the

default value of 9600 bps is automatically used.

238

CloseYMODEM
If this function is called, the use of YMODEM library is completed, and the COM port is closed.

SYNTAX

#include "ymodem.h"

short WINAPI _export CloseYMODEM(void)

INPUT

 None

OUTPUT

= 0 Normal termination

= Other Refer to the error code table.

239

8.6.6 FLINK Library

Overview
The FLINK library (FLINK.DLL) is a utility used to perform communication between two IT-2000

terminals or between the terminal and a personal computer via the infrared communication interface

(IrDA). It is a 16-bit dynamic link library (DLL). The FLINK function is called from its external

function.

WIN.INI setups
Various setups of the FLINK.DLL are defined in the WIN.INI file. The setup procedure with the

WIN.INI is explained below.

� Setup of the IrDA communication speed (MaxBaudRate)

The maximum possible baud rate of the IrDA is specified by "MaxBaudRate" in the WIN.INI

file.

Example

Setting the maximum possible baud rate to 4 Mbps

MaxBaudRate = 4000000

� Setup required for IrDA communication between two HTs (DiscoverCount)

For two HTs to communicate with each other, "DiscoverCount" in WIN.INI must have a

different setting on the primary side and secondary side. For communication via the I/O Box, set

up the WIN.INI file of the HT on the secondary side.

� Set DiscoverCount = 4 on the primary side.

� Set DiscoverCount = 0 on the secondary side.

240

� Setup values of WIN.INI file

Set up the IrDA section of the WIN.INI as follows;

[IrDA.COM2]
IrDA=ON
MaxBaudRate=115200 * To be set according to the communication speed employed.
SizeWindow=1
SizeData=2048
DisconnectThresholdTime=3
MaxTurnAroundTime=500
MinTurnAroundTime=5000
NumBOF=0
DeviceNickName=devicenickname * Can be an optional character string.
DeviceName=devicename
DiscoverCount=0
ServiceTyte=7

Interface to DLL
Copy FLINK.DLL to the Windows system directory or to a directory where the application is

located.

� void InitFlink(HWND hWndParent, HINSTANCE hInst)

This initializes FLINK.DLL. Be sure to call it before using the DoFlink() or DoFLinkForVB()

function.

SYMTAX

void InitFlink(HWND hWndParent, HINSTANCE hInst)

INPUT

hWndParent = Window handle of the call source side

hInst = Instance of the call source side

OUTPUT

None VxD not registered yet

Example

/* Code in C++ */

InitFLink(hWnd, hInst);

 *Set to "4" only if my HT is the primary side of the

 HT-to-HT communication.

241

� int DoFlink(int argc, char** argv)

This executes the FLINK protocol and various processes.

SYMTAX

int DoFlink(int argc, char** argv)

INPUT

argc = Number of input parameters

argv = Pointer to the parameter array

OUTPUT:

0 Normal termination

Example

This is an example of transmitting the "C:�test�temp.c" file of my HT so that it

overwrites the "C:�check�" directory on the partner side using the DoFlink

function.

/* Code in C++ */

int argc+4;

char* argv[4] = { "fl", "/so", "c: ��test ��temp.c", "c: ��check ��" }

result = DoFlink (argc, argv);

� short DoFLinkForVB(short iArgc, HAD sArgv)

The DoFLink function can be called from either C language or Visual BASIC Version 4 or later .

If Visual BASIC Version 3 is the application development language, use this function instead of

the DoFLink function. Since DLL is usually developed in C, it cannot read the Visual BASIC

data. With Visual BASIC Ver.4.0 or later DLL is automatically converted to a readable form,

however, this function is not implemented in Visual BASIC Ver.3 or earlier. This library (DLL)

provides a solution for using the dedicated Visual BASIC function. This function can of course

also be called from Visual BASIC Ver.4.0 or later.

SYNTAX

short DoFLinkForVB(short iArgc, HAD sArgv)

INPUT

iArgc = Number of input parameters

sArgv = Pointer to the parameter array

OUTPUT

0 = Normal termination

242

Example

This is an example of using the DoFlinkForVB function to transmit the "C:�test�temp.c"

file on the source side so that it overwrites the "C:�check�" directory on the destination

side .
/* Code in VB */

Dim sht As Integer

Dim hWnd1 As Long

Dim hInst As Long

ReDim Strz(3) As String

hInst = GetModuleHandle("flink.exe")

sht = InitFLink(Form1.hWnd, hInst)

Strz(0) = "fl"

Strz(1) = "/s"

Strz(2) = "c: �test �temp.c"

Strz(3) = "c: �check �"

sht = DoFLinkForVB(4, Strz())

Commands and options specified by the input parameters
The following is a list of commands to be passed to the DoFLink function as parameters. Basically,

only one command can be sent at a time. However, any command can be added with the IrDA or

RS-232C communication parameters.

Command Options that can be specified
File transmission /S O, R, Q, H, D
File reception /R O, R, Q, H, D
File append /A Q, S, H, D
File deletion /D ------------------------------------
File move /N -----------------------------------
Idle start None -----------------------------------
IrDA communication setup /L={,,,,,,} -----------------------------------
RS-232C communication setup /Y={,,,,,,} -----------------------------------

Example

Input parameter setup examples

� File transmission

int argc = 4;

char* argv[] = { “fl”, “/sr”, “c: ��src1.dat”, “c: ��dstn_dir ��” }

� File append

int argc = 4;

char* argv[] = {“fl”, “/ao”, “c: ��src.dat”,

 “c: ��dstn_dir ��dstn.dat” }

243

� File deletion

int argc = 3;

char* argv[] = {“fl”, “/d”, “c: ��dstn_sir ��*.dat”}

� File move

int argc = 4;

char* argv[] = {“fl”, “/n”, “c: ��src_dir ��src.dat”,

“c: ��dstn_dir ��dstn.dat” }

� File transmission with the optional communication parameters set

int argc = 5;

char* argv[] = {“fl”, “/y={38k,1,,,,,,,}”, “/s”, “c: ��src.dat”, “c:

��dstn_dir ��” }

� Idle start with the optional communication parameters set

int argc = 2;

char* argv[] = {“fl”, “/l={,100,,,,,}” }

244

Communication Commands

File Transmission (/S)
Function

This function transmits a file on the execution-side machine to the communication partner. If the

specified destination directory does not exist on the partner side, it will be automatically created.

Starting method

int argc = number of parameter arguments

char* argv = { "fl", "/S[Option]", "transmission file pathname"

[,"transmission file pathname"], “destination directory name"}

DoFlink(argc, argv)

Options

Option Description
O (Overwrite) Specification to forced overwrite a read-only file
R
(Recursive call)

Transfers all files under the directory specified by the
transmission file pathname.

Q (Quiet) Non-display of the FLINK output message
H
(HT-HT communication)

Used to perform communication between two handy terminals
(execute the partner-side FLINK with idle start).

Transmission file pathname

� Specify the file on the transmission source by its full pathname.

� A wild card can be used for the file name.

� Multiple transmission file pathnames can be specified.

Destination directory name

� Specify the storage directory name on the communication partner.

� The last input parameter is assumed to be the storage destination directory name.

� The directory name must include the drive name.

� Enter "��" as the delimiter of the directory name.

Example

 "d: ��" (Specification of the root directory)

 "d: ��test �12��" (Specification of the sub-directory)

 "d: ��test" (Incorrect specification)

245

Parameter setup examples

argc = 4

argv[] = {“fl” , ”/S” , ”a: ��info ��*.dat” , ”d: ��data ��”}

With this specification all files with a "DAT" extension under the "info" directory of the

drive A of the execution-side machine will be transferred to the "d:�data�" directory on the

partner side.

argv = 4

argv[] = {“fl” , ”/SR” , ”a: ��info ��*.dat” , ”d: ��data ��”}

With this specification all files with a "DAT" extension under the "info" directory (including

the sub-directories) of the drive A of the execution-side machine will be transferred to the

"d:�data�" directory on the partner side.

246

File Reception (/R)
Function

This function is used to receive a file that exists on the communication partner side by specifying the

request pathname. If the directory specified as the reception directory does not exist on the execution

side, it will be automatically created.

Starting method

 int argc = number of parameter arguments

 char * argv[] = { "fl", "/R[Option]", "request pathname" [,"request pathname"],

"reception directory name" }

DoFlink(argc, argv)

Options

Option Description
O (Overwrite) Specification to forced overwrite a read-only file
R (Recursive call) Transfers all files under the directory specified by the request

pathname.
Q (Quiet) Non-display of the FLINK output message
H
(HT-to-HT communication)

Used to perform communication between two handy terminals
(execute the partner-side FLINK with idle start).

Request pathname

� Specify by its full pathname the file to be received that exists on the communication partner side.

� A wild card can be used for the file name.

� Multiple request pathnames can be specified.

Reception directory

� Specify the storage directory name in which to store the received file.

� The directory name must include the drive name.

� Enter "��" as the delimiter of the directory name.

Example:

 "b: ��" (Specification of the root directory)

 "b: ��info �test ��" (Specification of the sub-directory)

 "b: ��info" (Incorrect specification)

247

Parameter setup examples

argc = 5

argv[] = {“fl” , ”/R” , ”a: ��test ��*.dat” , ”d: ��info ��*.*” , ”b: ��data ��”}

With this specification all files with a "DAT" extension under the "test" directory of the drive

A on the partner-side machine and all files under the "info" directory of the drive D will be

transferred to the "data" directory of the drive B on the execution side.

argc = 5

argv[] = {“fl” , ”/RR” , ”a: ��test ��*.dat” , ”d: ��info ��*.*” , ”b: ��data ��”}

With this specification all files with a "DAT" extension under the "test" directory (including

the sub-directories) of the drive A on the partner-side machine and all files under the "info"

directory (including the sub-directories) of the drive D will be transferred to the "data"

directory of the drive B on the execution side.

248

File Append (/A)
Function

This function appends the contents of a file that is specified by the append file pathname to a file that

is specified by the target file pathname.

Note:

File contents will be appended using the binary method (i.e. if the target file ends with an EOF code,

data is appended after it).

Starting method

int argc = 4

char* argv[] = { "fl", "/A[Option]" , "append pathname" , "target pathname" }

DoFlink(argc, argv)

Options

Option Description
S
(transmission append)

Indicates that the file specified by the append file pathname exists on the
IT-2000 side. (This option is only provided to maintain compatibility with
the Download Utility Software (HFC) on the personal computer side.
Therefore, the transmission appending operation can be performed
without this S option).

Q (Quiet) Non-display of the FLINK output message
H
(HT-to-HT
communication)

Used to perform communication between two handy terminals
(execute the partner-side FLINK with idle start).

Append file pathname

� Specify the file to be appended that exists on the execution side by its full pathname.

� A wild card cannot be used for the file name.

Target file pathname

� Specify the target file that exists on the communication partner side by its full pathname.

� A wild card cannot be used for the file name.

� If the specified file does not exist, a file with the name specified will be created.

Parameter setup examples

argc = 4

argv[] = {“fl”, ”/A”, ”a: ��my��data.dat”, ”b: ��you��master.dat”}

With the above specifications the contents of the data.dat file on the execution side are

appended to the master.dat file on the partner side.

249

File Deletion (/D)
Function

This function deletes a file that exists on the communication partner side.

Starting method

int argc = Number of parameter arguments

char* argv[] = { "fl", "/D", "deleted file pathname" [, "deleted file pathname"] }

DoFlink(argc, argv)

Deleted file pathname

� Specify the file to be deleted by its full pathname.

� Multiple file pathnames can be specified together.

Parameter setup examples

argc = 4

argv[] = {“fl” , “/D” , “a: ��test ��*.dat” , “b: ��info ��test.dat”}

Files that correspond to a:�test�*.dat and the b:��info��test.dat file will be deleted

using the above specifications.

250

File Move/File Rename (/N)
Function

This function is used to move the specified file (move source pathname) on the communication

partner side to the move destination pathname. This function is used specifically to move or rename

files within the same drive.

Starting method

int argc = 4

char* argv[] = { "fl", "/N", "move source pathname" , "move destination pathname" }

DoFlink(argc, argv)

Move source pathname

� Specify the file to be moved on the communication partner side by its full pathname.

� A wild card cannot be used for the file name.

Move destination pathname

� Specify the move destination pathname on the communication partner side.

� The pathname must include the drive name and directory name.

� If the specified directory does not exist, it will be automatically created.

Parameter setup examples

argc = 4

argv[] = {“fl” , “/N” , “a: ��test ��kk.dat” , “a: ��data ��”}

With the above specifications the a:�test��kk.dat file is moved to the a:�data�directory

on the communication partner side.

argc = 4

argv[] = {“fl” , “/N” , “a: ��test ��kk.dat” , “a: ��data ��sj.dat”}

The a:�test��kk.dat file on the communication partner side is renamed to a:�data�sj.dat

using the above specifications.

251

Idle Start
Function

This function is used to transfer the request right to the partner side. This function will be terminated

if it is abnormally terminated, or if a termination designation is transmitted or received. If a script

file is specified, communication will progress according to the contents of the specified script file

that exists on the communication partner side.

Starting method

int argc = Number of parameter arguments

char* argv[] = { "fl", [, "script file name"] }

DoFlink(argc, argv)

Script file name

� Specify the script file name that exists on the communication partner side.

252

IrDA Environment Setup Commands

Wait Time Setup (/L)
Function

This function sets up the Wait time for communication.

Starting method

int argc = Number of parameter arguments

char* argv[] = { "fl", "/L={, wait time for connection establishment, wait time for data

reception/transmission,,,,}" }

DoFlink(argc, argv)

If the parameters for the L option do not have to be entered, enter only comma separators. If this is

the case, default values will be automatically used.

Wait time for connection establishment

� Specify 0 to 3600 (second)

� If 0 is specified, the process takes until connection establishment.

� The default value is 1800 seconds.

Wait time for data reception/transmission

� Specify 0 to 3600 (second)

� If 0 is specified, the process takes until the end (normal end or abnormal end).

� The default value is 300 seconds.

Parameter setup examples

argc = 2

argv[] = { “fl” , “/L={,20,,,,,}” }

Following the parameter setting shown above as example, the environment setting can be done

according to the details listed in the table below.

Parameter Process value Remark
Wait time for connection establishment 20 sec.
Wait time for data transmission/reception 300 sec. Default

253

COM Environment Setup (/Y)
Function

This function sets up the environment of COM port.

Starting method

int argc = Number of parameter arguments

char* argv[] = { "fl", "/Y={communication speed, COM specification,,,,,,,}" }

DoFlink(argc, argv)

If the parameters for the Y option do not have to be entered, enter only comma separators. If this is

the case, default values will be automatically used.

Communication speed

Sets up the communication speed (baud rate) when communication is executed through COM1

(RS-232C port) or Satellite I/O Box. The setting baud rate cannot be valid for other communications

, between HT and HT or through Master I/O Box.

Input parameter Baud rate (bps) Remark
1200 1200
2400 2400
4800 4800
9600 9600 Default
19 K 19200
38 K 38400
57 K 57600

115 K 115200

COM specification

Specifies COM port for the communication.

Input parameter COM port Remark
1 COM1 (RS-232C)
2 COM2 (IrDA) Default

Starting method

argc = 2

argv[] = { “fl” , “/Y={,1,,,,,,,}” }

254

Following the parameter setting shown on the previous page as example, the communication

specifications can be set according to the details listed in the table below.

Parameter Process value Remark
Communication speed 9600 bps Default
COM specification COM1 (RS-232C)
Data bits 8 bits Fixed
Parity None Fixed
Stop bit 1 bit Fixed

255

List of termination codes
The following table shows the termination codes returned by FLINK.DLL. Note that only the

termination code (i.e. with no message) will be displayed at a termination.

End Code
Category Detail Code
(High) (LOW)

Description

Normal end
00h 00h Normal end.

0DCh - 0F5h 00h Drive (A to Z) format notice.
F6h 00h Power off ending notice.
F7h 00h Reset ending notice.
F8h 00h Break key interrupt ending.

File Error
(int21h)

02h 02h File not found.
02h 03h Path not found.
02h 0Bh Invalid format.
02h 0Fh Invalid disk drive.
02h 10h Delete request is current directory.
02h 11h Not same disk.
02h 12h Not same disk.

There may be cases where codes not defined as File Error (int21h) are returned. If this happens the

code is returned as a DOS expansion error code.

File Error
(int24h)

03h 13h Write protect error.
03h 14h Unknown unit.
03h 15h Drive not ready.
03h 17h Data error (CRC).
03h 19h Seek error.
03h 1Ah Unknown disk format.
03h 1Bh Sector not found.
03h 1Dh Write error.
03h 1Eh Read error.
03h 1Fh Unknown error.
03h 20h File share error.
03h 21h File lock error.
03h 22h
03h 23h
03h 53h

256

End Code
Category Detail Code
Protocol

Error

Description

01h 00h Command error (undefined function code).
01h 01h Command error (undefined sub-function code).
01h 02h Command error (not execute command).
01h 03h Check sum error.
01h 04h Command sequence error.
01h 05h Sequence number error.
01h 06h Other protocol error.
01h 07h Parameter error.
01h 08h Timeout error.

Protocol
Error (File)

04h 00h Read only file access error.

Internal Error
0Fh 01h Parameter error.
0Fh 02h Command buffer overflow.
0Fh 03h Receive data analysis.

257

9. Utility

9.1 Overview

The development kit contains some utility programs to be used as required.

� Calculator Utility

Calculator program including memory calculation implementing the CASIO standard

specifications .

� Clock Utility

Used to refer the date and time of the built-in clock and to set the power ON alarm.

� Calendar Utility

Used to refer to a calendar for a period of the years between January 1980 and December

2079.

� Remaining Battery Voltage Display Utility

Displays on a software meter the amount of battery voltage remaining for main and sub-

batteries.

� FLINK Utility

 Transfers/receive s file through IrDA interface.

� XY Utility

 Transfers/receives file through XMODEM or YMODEM.

� Reverse Video Utility

Changes the color of LCD screen. This utility is used to change the entire screen to reverse

video. From the nature of the FSTN semi-transparent type LCD unit of this terminal the

density of colors (tones) will be reversed.

� COM2KEY Utility

Using COM cable and PC, it is possible to input through keyboard on the DOS prompt.

In other words, a PC keyboard can be used to input characters and numerals to IT-2000

through the DOS prompt.

258

9.2 Calculator Utility

Overview
Use this calculator utility for decimal calculations. This utility provides arithmetic calculations,

memory calculations and the function to transfer a result of calculations to text box in application

program. It is provided as a Windows application.

File Name

WCALC.EXE

 Fig. 9.1

Function
The calculator utility provides the following functions:

� Calculation range: � 0.00000000001 to � 999999999999 and 0 (12 digits)

� Apostrophes after the thousandth digit.

� Arithmetical calculation (+, –, �, �)

� Arithmetical constant calculation (++, --, ��, ��)

� Percentage calculation (%)

� Calculation with memory functions (MC, MR, M+, M–)

� Display of a memorized value

� Value entry function (ENT key)

A result of arithmetic calculations is transferred to the key buffer to be displayed in text

box by application program.

259

Startup Method
This utility is not stored in the basic drive (C:). It must be copied to RAM disk (A:) or FROM

drive (D:) and can be started up from Windows.

Basic Function
Operation of the utility is performed by inputs from Ten key and Touch panel.

Ten Key

Key Description
0 to 9 Input numeral.

. (decimal) Input decimal point.
- Subtraction key

CLR Cancel key for numeral input and release key for error condition.
ENTER Confirmation key (same as “=” key) The key is represented as “=”.

Touch Panel

Key Description
C Cancel key for numeral input and release key for error condition.
% Percent calculation key.

AC Clear key for releasing error conditions and numeral inputs except
content of the memory.

ENT Confirmation key.
MC Memory clear key.
MR Memory read key.
M- Memory subtraction key.
M+ Memory addition key.
+- Arithmetic calculation keys.(addition, subtraction)
�X a Arithmetic calculation keys (multiplication, division)

260

9.3 Clock Utility

Overview
The clock utility is used to reference the current time, set the date and time, or set an alarm.

This utility is provided as a Windows utility.

Fig. 9.2

File Name
WCLOCK.EXE

Function
The clock utility provides the following functions:

� Displays the current time in digital or analog mode. 12-hour system or 24-hour system can

be selected for the digital display format by the setup file.

� The current date is displayed with the following format: year/month/day/day of the week.

The display mode can be specified by the setup file.

� The current time is displayed with the following format: hour/minute/second.

� 12 hour/24 hour system.

� Date and time can be set from 0 O'clock 0 minutes, January 1 (Tuesday) 1980 to 23

o'clock 59 minutes, December 31 (Sunday) 2079.

� An alarm can be set.

� A logo string can be specified by the setup file.

261

Setup File
The display formats for date and time, and logo can be specified at this setup file (WCLOCK.INI).

The setup file must be stored in the directory of D:�WINDOWS. If it does not exist, and

WCLOCK.EXE is executed, it will be automatically created. The following shows how to specify

the WCLOCK.INI.

[INTL]

DATE= display format of date

LOGO=[logo character string]

AMPM=0 or 1

AMPM= Specify the time system, 12-hour or 24-hour system.
AMPM= 1 (12-hour) or AMPM= 0 (24-hour)
Specify the display format of date, month and year.
The following display format is used to indicate.
YYYY
YY
MMM
MM
DD
‘-’, ‘.’,
‘/’

Year in 4 digits.
Year in 2 digits (most least two digits of the year).
Month by abbreviation (three alphabets).
Month in 2 digits (by numeral).
Day in 2 digits (by numeral)
Characters on the left side are used as delimiter.

DATE=

E
x
.

/F=MMM-DD-YYYY
/F=YY/MM/DD
/F=YYYY.MM.DD

JAN-28-1998[WED]
98/ 1/28[WED]
1998. 1.28[WED]

Specify the logo of clock by characters. The maximum length
of the logo can be 9 characters. Also, it is possible to include
characters and numbers combined in the logo.

LOGO=

/T=CASIO

262

9.4 Calendar Utility

Overview
Use this calendar utility for referring to dates. This utility is provided as a Windows utility.

 Fig. 9.3

File Name

WCAL.EXE

Function
The calendar utility provides the following functions:

� Displays a calendar for two months on one screen page.

� At start up, the current system date will be displayed in the top section.

� The current system date will flash.

� Dates between January, 1980 and December, 2079 can be referenced.

� The calendar of the previous/next month can be accessed.

� Possible to call a calendar of the specified year and month.

Startup Method
This utility is not stored in the basic drive (C:). It must be copied to RAM disk (A:) or FROM

drive (D:) and can be started from Windows.

263

9.5 Remaining Battery Voltage Display Utility

Overview
The remaining battery voltage display utility is used to monitor the remaining voltage of the

main battery and sub-battery. This utility is provided as a Windows utility.

 Fig. 9.4

File Name

WCHKBATT.EXE

Function
Display for remaining battery voltage
of main battery

The remaining battery voltage can be displayed as
a percentage and as a bar chart. It can also display if
the output voltage from the battery is low.

Display for power supply connection
states

The connection status of AC adaptor and I/O Box
can be displayed.

Display for remaining battery voltage
of sub-battery

The remaining battery voltage of sub-battery can
be displayed.

Note:

Display of remaining battery voltage is determined by checking on the voltage output by the main

battery. The maximum indication of remaining battery voltage may not be displayed if the

worn-out battery is used even if it is fully recharged.

Startup Method
This utility is not stored in the basic drive (C:). It must be copied to RAM disk (A:) or FROM

drive (D:) and can be started from Windows.

264

9.6 FLINK Utility

Overview
The FLINK Utility is used to perform communication either between the IT-2000 and PC, or

between two IT-2000s by means of the IrDA protocol. This utility is provided as DOS application.

It can be called as single command line or as a child process of the application program.

Function
IrDA communication
method setup

Sets the IrDA communication method.

File transmission Transmits files.
File reception Receives files.
File append Appends (concatenates) a file on the transmission side to a file on the

reception side.
File deletion Deletes a file on the communication partner side.
File move Moves a file within the same drive on the communication partner side.
Idle start Passes the right of communication request to the communication

partner and enters the command reception wait state.

File name:

FLINK.EXE

Startup Method
This utility is supplied on drive (C:). Usually this utility is made available after it is called from the

system menu as a child process. However, it can be used either as a single command or as a child

process to be called from other application.

Operation Method
With this utility operation priority is placed on only one side and the other side must remain in the

command reception wait sate. This is true for both HT-to-HT communication and HT-to-PC

communication. Hereinafter the operation side is referred to as the terminal, and the command

reception wait side is referred to as the host.

To establish HT-to-HT communication, idle-start (host-start) FLINK on one side and specify the

transmission or reception command to execute (terminal-start) FLINK.

To establish HT-to-PC communication, execute the communication host utility called "LMWIN" on

the PC. For information about this communication host utility refer to the IT-2000

Upload/Download Utility Manual.

In the following pages the method used to specify the start options and information about each

function is given.

265

9.6.1 Communication Parameter Setup Command (/L={,,,}

Sets up command parameters according to the command specified next to "=". If the communication

environment command needs to be specified, this command must precede it.

Command Specification Method
FLINK /L={ maximum IrDA speed, wait time until the connection is established, data

transmission/reception wait time}

Always place the parameters between a pair or braces ("{ }"). Parameters do not need to be

specified, however, commas (,,,) must be specified. If a parameter is not specified, the corresponding

default values will be used.

IrDA communication speed
Input parameter Baud rate (bps) Remark

2400 2400
9600 9600
19 K 19200
38 K 38400
57 K 57600
115 K 115.2 K
576 K 576 K
1 M 1 M
4 M 4 M Default value

Wait time until the connection is established
� Specify between 0 and 3600 seconds.

� If "0" is specified, the application will wait until the connection is established.

� The default value is 1800 seconds.

Data transmission/reception wait time
� Specify between 0 and 600 seconds.

� If "0" is specified, the application will wait until the communication function is normally or

abnormally terminated.

� The default value is 300 seconds.

266

Example of specification
FLINK /L={4M, 20, }

Meaning:

Communication will be performed with a maximum IrDA speed of 4 Mbps, the wait time

until the connection is established is 20 seconds, and the data transmission/reception wait time

is default-set to 300 seconds.

267

9.6.2 File Transmission (/S)

Function
This function transmits a file from the terminal machine to the host machine. If the directory

specified by the "storage destination directory name" does not exist on the host side, it will be

automatically created. If the identical file name exists on the host side, it will be forcibly overwritten.

Even if it is a read-only file, it is possible to overwrite by specifying the "O" option.

Startup Method
FLINK /S[Option] transmission file pathname [transmission file pathname...]

storage destination directory name

Options

Option Description
O If the host side has an identical file name and it is a read only file, it can

be forcibly overwritten by specifying this option.
R If this option is specified and if a wild card is used for the "transmission file

pathname," all files under the specified directory including sub- and deeper
directories will be transmitted. If the file name specified by the wild card does
not exist in the sub-directory, it is not automatically created on the host side.
If a wild card is not used, files included in the sub- and deeper directories will
not be transmitted.

Q Designates non-display of the message.
H If HT-to-HT communication is to be performed, specify this option on the

terminal.

Transmission file pathname
� Specify the file on the terminal machine by its full pathname and include the drive name.

� Wild cards (*, ?) can be used for the file name.

� If multiple "transmission file pathnames" are specified, separate each with a space.

Storage destination directory name
� Specify the storage directory name on the communication partner.

� The last parameter input is assumed to be the storage destination directory name.

� The directory name must include the drive name.

� Enter "�" as the delimiter of the directory name.

268

Example of specifications of storage destination director y name
Specification of root directory D:�
Specification of sub-directory D:�TEST�BIN�
Incorrect specification D:�TEST

Note:

If the host (reception) side has a file with the identical name, this command will forcibly overwrite

that file. However, this overwrite operation is not unconditional. This command first creates a

temporary file on the disk of the host, then it overwrites the file after the transmission has been

completed. This is a safety measure to protect the original file from, for example, a file transmission

failure. Accordingly, if the host side has a file with the identical name, there must be enough space

on the disk to store the host-side transmission file. If there may not be sufficient disk space, files on

the host side should be deleted in advance or the file delete command (described on page 249) on

the transmission side should be used to delete files on the host side.

Example of specifications
FLINK /S A: �TEST�*.DAT
D:�TEST2�

This specification transfers all files that are in "A:�TEST" of the
terminal and that have a "DAT" extension to "D:�TEST2�" on
the host.

FLINK /SR A: �TEST�*.DAT
D:�TEST2�

This specification transfers all files that are in "A:�TEST"
(including sub-directories) of the terminal and that have a "DAT"
extension to "D:�TEST2�" on the host.

269

9.6.3 File Reception (/R)

Function
This function receives a file from the host. The objective file name is specified by the full pathname

(including the drive name) on the host. The received file is saved in the directory specified by the

terminal side. If the specified directory does not exist on the terminal, it will be automatically

created.

Startup Method
FLINK /R[Option] request pathname [request pathname...] reception directory

Options

Option Description
O If the host side has a file with the identical name and it is a read only file, it can

be forcibly overwritten by specifying this option.
R If this option is specified and if a wild card is used for "request pathname,"

all files under the specified directory including the sub- and deeper directories
will be transmitted. If the file name specified by the wild card does not exist in
the sub-directory, it is not automatically created in the host side. If a wild card is
not used, files included in the sub- and deeper directories will not be transmitted.

Q Designates non-display of the message.
H If HT-to-HT communication is to be performed, specify this option on the

terminal.

Request pathname
� Specify the objective file of reception which is on the host machine by its full pathname.

� Wild cards (*, ?) can be used for the file name.

� If multiple "request pathnames" are specified, separate each of them using a space.

Reception directory
� Specify the directory in which the received file is stored.

� The directory name must include the drive name.

� Enter "�" as the delimiter of the directory name.

Example of specifications of storage destination directory name

Specification of root directory D:�
Specification of sub-directory D:�CASIO�BIN�
Incorrect specification D:�CASIO

270

Note:

If the terminal (reception) side has a file with the identical name, this command will forcibly

overwrite that file. However, this overwrite operation is not unconditional. This command first

creates a temporary file in the disk of the terminal, then it overwrites the file after transmission has

been completed. This is a safety measure to protect the original file from, for example, a file

transmission failure. Accordingly, if the host side has a file with the identical name, there must be

enough space on the disk to store the transmission-side transmission file. If there may not be

sufficient disk space, files on the terminal side should be deleted in advance.

Example of specifications
FLINK /R A: �TEST�*.DAT
D:�TEST2�*.* B: �CHECK�

This transfers all files that are in "A:�TEST" and that have a
"DAT" extension, and all files included in "D:�TEST2"
from the host to "B:�CHECK" on the terminal.

FLINK /RR A: �TEST�*.DAT
D:�TEST2�*.* B: �CHECK�

This transfers all files that are in "A:�TEST" (including the
sub-directory) and that have a "DAT" extension, and all files
included in "D:�TEST2" (including the sub-directory) from
the host to "B:�CHECK" on the terminal.

271

9.6.4 File Append (/A)

Function
This function appends (concatenates) a file on the terminal to the end of a specified file on the host.

The objective file will be appended as a binary file. In other words, the data will be concatenated

after the EOF code, if one exists. This function is valid only for transmission. Any files received

from the host will not be concatenated to a file that exists on the terminal.

Startup Method
FLINK /A[Option] appended file pathname target file pathname

 Options

Option Description
Q Designates non-display of the message.
H If HT-to-HT communication is to be performed, specify this option on the

terminal.

Appended file pathname
� Specify the file to be appended by its full pathname, including the drive name.

� This file exists on the terminal side.

� Wild cards cannot be used.

Target file pathname
� Specify the target file to be concatenated by its full pathname, including the drive name.

� This file exists on the host side.

� Wild cards cannot be used.

� If the specified file does not exist on the partner side, a new file will be created with the specified

pathname.

Example of specifications
FLINK /A A: �MY�CASIO.DAT
B:�YOU�MASTER.DAT

This specification concatenates the "CASIO.DAT"
file on the execution (transmission) side to the end
of the "MASTER.DAT" file on the partner
(reception) side.

272

9.6.5 File Deletion (/D)

Function
This function deletes a file on the host.

Startup Method
FLINK /D[Option] deleted pathname [deleted pathname...]

Option

Option Description
H If HT-to-HT communication is to be performed, specify this option on the terminal.

Deletion by pathname
� Specify the objective file to be deleted by its full pathname, including the drive name.

� If multiple "deleted pathnames" are specified, separate each using a space.

Example of specifications
FLINK /D A: �TEST�*.DAT
B:�TEST2�CHECK.DAT

This specification deletes all files that are in "A:�TEST" and
that have a "DAT" extension, and all files included in
"B:�TEST2�CHECK.DAT" on the communication partner
side.

273

9.6.6 File Move/Rename (/N)

Function
This function moves a file within the same drive or renames the file on the host. A file cannot be

moved into a different drive.

Startup Method
FLINK /N[Option] move source pathname move destination pathname

Option

Option Description
H If HT-to-HT communication is to be performed, specify this option on the terminal.

Move source pathname
� Specify the objective file to be moved or renamed on the host side by its full pathname, including

the drive name.

� Wild cards cannot be used for the file name.

Move destination pathname
� Specify a file name used as the move destination or the resultant file name of rename.

This file name must be specified by its full pathname, including the drive name.

� If the specified directory does not exist, it will be automatically created.

Example of specifications
FLINK /N A: �TEST�KK.DAT
A:�TEST2�

This specification moves "A:�TEST�KK.DAT" to
"A:�TEST2" on the communication partner side.

FLINK /N A: �TEST�KK.DAT
A:�TEST2�SJ.DAT

This specification renames "A:�TEST�KK.DAT" as
" A:�TEST2�SJ.DAT" on the communication partner
side.

FLINK /N A: �TEST�KK.DAT
B:�TEST2�SJ.DAT

A different drive cannot be specified. This specification
results in an error.

274

9.6.7 Idle Start

Function
This function passes the right of communication request to the terminal and enters the command

reception wait state. This function will be terminated if it is abnormally terminated, if it transmits a

designation of termination, or if reception has been completed.

Startup Method
FLINK

 (No specific command exists.)

Example of specifications
FLINK
(No command specification)

Waits for a request from the terminal.

275

9.6.8 Termination Codes and Messages

In the following table, termination codes and their error messages returned by FLINK.EXE

are described.

Error Code Error Message Description
Category
(High)

Detail
(Low)

Normal End
0x00 0x00 NORMAL ENDING Normal end.

0xDC-F5 0x00 A�ZDRIVE FORMAT NOTICE Format notification of drives A to Z
0xF6 0x00 POWER OFF ENDING NOTICE Notification of the end of the power.
0xF7 0x00 RESET ENDING NOTICE Notification of the end of reset.
0xF8 0x00 BREAK KEY INTERRUPT ENDING Notification of abortion by user.

Protocol Error
0x01 0x00 COMMAND ERROR Protocol error (undefined function

code)
0x01 0x01 COMMAND ERROR Protocol error (undefined sub-

function code)
0x01 0x02 COMMAND ERROR Command cannot be executed.
0x01 0x03 CHECK SUM ERROR Check-sum error
0x01 0x04 COMMAND SEQUENCE ERROR Command sequence error.
0x01 0x05 SEQUENCE NUMBER ERROR Sequence number error.
0x01 0x06 OTHER PROTOCOL ERROR Protocol is illegal.
0x01 0x07 PARAMETER ERROR Parameter error.
0x01 0x08 TIMEOUT ERROR Timeout error.

File Error (INT21h)
0x02 0x02 FILE NOT FOUND File cannot be found.
0x02 0x03 PATH NOT FOUND Path cannot be found.
0x02 0x0B INVALID FORMAT Invalid formatting.
0x02 0x0F INVALID DISK DRIVE Invalid disk.
0x02 0x10 CANNOT DELETE DIRECTORY Delete request is specified to current

directory.
0x02 0x11 NOT SAME DISK Disk is not the same.
0x02 0x12 FILE NOTHING File cannot be found.

Note:
Besides the detail codes which are defined in File Error (INT21h) above, other error codes may be
returned as extension error code of DOS.
File Error (INT24h)

0x03 0x13 WRITE PROTECT ERROR Write protect error.
0x03 0x14 UNKNOWN UNIT Undefined unit.
0x03 0x15 DRIVE NOT READY Drive is not ready.
0x03 0x17 DATA ERROR (CRC) Data error.
0x03 0x19 SEEK ERROR Seek error.
0x03 0x1A UNKNOWN DISK FORMAT Disk is not formatted.
0x03 0x1B SECTOR NOT FOUND Sector cannot be found.
0x03 0x1D WRITE ERROR Write error.
0x03 0x1E READ ERROR Read error.
0x03 0x1F UNKNOWN ERROR Error cannot be defined.
0x03 0x20 FILE SHARE ERROR Specified file is already opened.
0x03 0x21 FILE LOCK ERROR File lock error.
0x03 0x22 INVALID DISK CHANGED Invalid disk exchange.
0x03 0x23 FCB FULL FCB is full.
0x03 0x53 FATAL ERROR Fatal error (Unsuccess INT24h).

276

Note:
Besides the detail codes which are defined in File Error (INT24h) above, other error codes may be
returned as fatal error code of DOS.
Protocol Error (File)

0x04 0x00 CANNOT OVERWRITE File is “read-only”.

IrDA Protocol Error (For detail refer to the table on the next page.)

0x80 0x01 Open error.

0x80 0x02 Data send error.

0x80 0x03 Data receive error.

0x80 0x04 Close error.

0x80 0x05 Error in setting of self-station ability.

0x80 0x06

IrDA PROTOCOL ERROR

Error in setting of communication status.

Internal Error

0x0F 0x01 Parameter error.

0x0F 0x02 Command buffer overflow.

0x0F 0x03

INTERNAL ERROR

Analysis on received data.

- - RECEIVED ERROR REQUEST When error notification is received from
the communication partner.

The following error codes are output when an error occurs in the IrDA library.

IrDA Library Error
Termination Code Message Description
0X000000001 Resources are not enough.
0X000000002 No device to connect.
0X000000004 No service available at the destination device.
0X000000008 Connecting is failed. Timeout to abort or to wait for the

connection.
0X000000010 Opened file is accessed to open.
0X000000020 IR_OPEN is not executed.
0X000000040 Specifying WIRE is illegal.
0X000000080 Parameter error.
0X000000100 Tmeout to wait for send/receive.
0X000000200 Over-run error.
0X000000400 Parity error.
0X000000800 Flaming error.
0X000001000 CS signal timeout.
0X000002000 DR signal timeout.
0X000004000 CI signal timeout.
0X000008000 CD signal timeout.

277

9.7 XY Utility

Overview
The XY utility is used to perform communication either between an IT-2000 and PC, or between

two IT-2000 terminals by means of XMODEM or YMODEM BATCH protocol.

This utility is provided as a DOS application and should be activated as a command line or as

child-process of the application program.

File name:

XY.EXE

Function
Transmission of a file Transmits a file.
Reception of a file Receives a file.
Selection of a protocol Select either XMODEM protocol or YMODEM-BATCH protocol.
Specification of the
error check method

Select the error check method as the checksum or CRC method.

Specification of a
packet length

Select the packet length as 128 or 1024 bytes.

Specification of a baud
rate

Select a baud rate between 1200 and 115200 bps.

Transmission of
multiple files
(only for YMODEM)

By using a wild card it is possible to transmit multiple files at one time.
In addition, files included in the sub- and deeper directories can be
transmitted.

Startup Method
This utility is supplied on drive (C:). Usually this utility is made available after it is called from the

system menu as a child process. However, it can be used either as a single command or as a child

process to be called from another application.

Note:

When the cable comes off while the communication takes place:

If the connection cable is accidentally unplugged while communication between the IT-2000 and

PC is taking place, a communication error results and communication is interrupted. In this case the

communication software on the PC will display an error message and interrupt

transmission/reception, however, some data may remain in the transmission buffer. If an attempt is

made to restart communication in this condition, the XY utility will receive illegal packets,

hampering normal communication. If this occurs, terminate the communication software on the PC

side then restart it to restore normal communication.

278

About time stamping of files:

This utility supports the function to exchange time stamp information between the transmitted file

and received file. The time stamp information to be exchanged will be processed assuming that it is

Greenwich standard time. In contrast, the time used by the IT-2000 is the local time, and the time

stamp of IT-2000 files are accordingly controlled based on the local time.

The XY utility, for file transmission/reception by means of the YMODEM protocol, will convert a

time stamp in Greenwich standard time to a time stamp in local time, or vice versa. This time

conversion is achieved according to the environment variable, TZ. In communication between two

IT-2000 terminals, if, for example, TZ of the transmission side is "JST+5", the time stamp of a file

to be transmitted will have five hours added. In this case the reception side will create a file by

subtracting five hours from the time stamp of the received file. If the environment variable TZ is not

set, this time conversion is not performed. The time stamp made at XMODEM communication uses

the system time of the reception side.

Transmission side Reception side

IT-2000(TZ=none) 12:00 � �0 � 12:00 � �0 � 12:00 IT-2000(TZ=none)
IT-2000(TZ=GMT) 12:00 � �0 � 12:00 � �0 � 12:00 IT-2000(TZ=GMT)
IT-2000(TZ=JST+5) 12:00 � +5 � 17:00 � -5 � 12:00 IT-2000(TZ=JST+5)
IT-2000(TZ=JST+5) 12:00 � +5 � 17:00 � ? � ??:?? PC
PC 12:00 � ? � ??:?? � -5 � (??-5):?? IT-2000(TZ=JST+5)

About key input during communication:

Do not press any key during communication, otherwise file transmission/reception may be

hampered.

Using this utility where COM2KEY.EXE is resident:

To use this utility where a debugging tool called COM2KEY.EXE is resident, the /N option must be

specified. Since COM2KEY.EXE will transfer the displayed characters to the COM port, the

characters displayed by this utility will also be transferred to the COM port, hampering normal

transmission.

Function and operation method
Always specify necessary start parameters. These parameters include the essential command and its

option, other parameters, and the transmitted/received file name. Each parameter must be separated

by a space or TAB code.

XY /command+option /parameter [/parameter...] file name [file name...]

279

Command
Always specify /S or /R. This command must be specified as the first parameter.

/R | /S Transmission or reception specification

/R: File reception

/S: File transmission

(Both /R and /S cannot be specified at the same time.)

Option
After the command, specify the appropriate options. The options must be specified in the following

order:

X / Y Communication protocol specification. This must directly follow either /R or /S.

X: XMODEM protocol communication.

Y: YMODEM protocol communication.

(Both X and Y cannot be specified at the same time.)

M | C Error check method. This can be specified only if either /R or /S is specified.

M: Checksum (only for XMODEM)

C: CRC

(Both M and C cannot be specified at the same time.)

If this specification is not made, M is automatically used if XMODEM communication

is specified, and C is automatically used if YMODEM communication is specified. The

M specification will be invalid if the Y option is specified.

N | L Packet length.

N: Normal (128 bytes)

L: Long (1024 bytes)

(Both N and L cannot be specified at the same time.)

If this specification is not made, N is automatically used if XMODEM communication

is specified, and L is automatically used if YMODEM communication is specified.

280

Other parameters
Specify the options immediately after (without inserting a space) the command. Options must be

specified in the following order:

/N Suppression of message display

Specify this option if a copyright message or error message is suppressed from being

outputted.

/BN Specification of a baud rate (If omitted, 2 (9600 bps) is employed.)

N = 0: 2,400 bps
1: 4,800 bps
2: 9,600 bps
3: 19,200 bps
4: 23,040 bps
5: 28,800 bps
6: 38,400 bps
7: 57,600 bps
8: 115,200 bps

/P For file transmission via YMODEM protocol this option sets a pathname on the

destination side from the pathname of the object file that exists on the transmission

source. This file name must be specified by its full pathname.

/PXXX Modifies the pathname of a file to be transmitted via YMODEM protocol.

XXX= path (maximum 250 characters)

/U With this option if a wild card is used for a file name to be transmitted via YMODEM

protocol, files included in the sub-directory can be the objectives of file transmission.

This option is also used to mirror-copy a drive.

File name
XMODEM: Transmission (/SX) : Specify only one file.

Reception (/RX) : Specify one file name.

* Multiple files cannot be used.

* Wild cards cannot be specified.

YMODEM: Transmission (/SY) : Specify file names. Multiple files can be specified as a lump.

If specifying multiple files, separate each of them using a space. Wild cards

 (*, ?) can be used.

Reception (/RY) : File name is invalid.

281

Example of specifications
XY /SY A: �WORK�TEST.DAT Transfers “A:�WORK�TEST.DAT” at transmission

side. “TEST.DAT” can be copied in the current directory
at reception side.

XY /SY /P A: �WORK�TEST.DAT Transfers “A:�WORK�TEST.DAT” at transmission
side. “A:�WORK�TEST.DAT” can be copied at
reception side. If “A:�WORK” does not exist, it is
created newly.

XY /SY /P B: �TEST A: �WORK�
TEST.DAT

Transfers “A:�WORK�TEST.DAT” at transmission
side. “B:� TEST� TEST.DAT” can be copied at
reception side. If “B:�TEST” does not exist, it iscreated
newly.

Termination Codes and Messages
Termination

Code
Message Description

00 NORMAL END End normally.
01 ABNORMAL END Abort by CLR key. Or, the communication partner aborts.
02 (Reserved)
03 FILE NOT FOUND Input file cannot be found.
04 FILE NOT CREATE File cannot be created.
05 TIME OUT Timeout has occurred.
06 (Reserved)
07 WRITE FAILURE Error in writing has occurred.
08 COMMUNICATION

ERROR
Error during communication has occurred.

09 (Reserved)
10 FILE SIZE ZERO Size of specified file is 0 byte. (when XMODEM is used.)

282

9.8 Reverse Video Utility

Overview
This utility is used to change the entire screen to reverse video.

From the nature of the FSTN semi-transparent type LCD unit of this terminal the density of colors

(tones) will be reversed. So, for example, a light color appears dark and a dark color appears light.

To avoid this problem use this supplied utility to represent colors as closely as possible.

This utility is provided as a DOS application and should be activated as a command line or as

child-process of the application program.

File name

LCDREV.COM

Startup Method
This utility is not supplied on the basic drive (C:). Copy it in the F-ROM drive (D:) or RAM disk

(A:) before use. This program can be used either as a single command or as a child process.

Operation Method
Format: LCDREV Option

Option Function
0 Normal (Returns to default value at a time of boot up)
1 Only text is reversed
2 Only graphics are reversed.
3 Both text and graphics are reversed.

283

9.9 COM2KEY Utility

Overview
This utility is a debug tool that allows key input at the DOS prompt from the personal computer.

If this utility is resident in memory, the data entered in COM1 will be passed to the key buffer, and

the characters displayed on the DOS prompt screen will be outputted for COM1. Therefore, if this

terminal is connected to a PC via the COM cable and if the terminal emulator is used on the PC,

characters can be entered in the DOS prompt screen of this terminal through the PC's keyboard.

This utility is provided as a DOS application and should be activated as a command line or as

child-process of the application program.

File name

COM2KEY.EXE

Operation Method
� Connect the COM1 (8-pin) port of this terminal to the COM port of the PC with a cable.

� Initiate the terminal emulator software on the PC and make the following setups.

Baud rate 9600 bps
Data bits 8 bits
Parity bit None
Stop bit 1 bit

� Permanently install COM2KEY on the IT-2000 side with the following procedure.

� If a key input is made on the PC side, the entered character will be displayed in the DOS prompt

screen of this terminal.

Startup Method
This utility is supplied and is stored in the basic drive (C:). This utility is an EXE file-type device

driver. It can be used as a single command or specified by CONFIG.SYS.

If executed from DOS prompt line :

Format: COM2KEY [Option]

If specified by CONFIG.SYS :

Format: DEVICE=C: �COM2KEY.EXE

Option Function
None Permanently install COM2KEY.

/R Cancels residence of COM2KEY.

284

9.10 Windows Installation Utility

Overview
MS-Windows has been installed on the MASK ROM drive (E:). However, MS-Windows cannot be

booted directly from the MASK ROM drive. This is because MS-Windows will overwrite some of

the INI files at start up. However, since all the files including the INI files are initially located in the

MASK ROM drive, they cannot be overwritten, therefore an error will result. To avoid this problem,

it is necessary to copy some of the files in the write-permit drive (D:) before booting MS-Windows.

Set up the country code and language to be used internally by Windows. WINST.EXE handles all

these processes. WINST.EXE can also be used to install application programs. MS-Windows will

load a program, specified by the shell script contained in the [boot] section of system.ini, as an

application program. The Program Manager is loaded when MS-Windows is booted because the

Program Manager has been specified by the above mentioned shell script. For this terminal it is

recommended to specify the application program instead of the Program Manager. All processes,

including rewriting of the system.ini file, can be automatically handled with WINST.EXE.

File name:

WINST [/M] [/T<directory>][Script File]

Start Option
The default operations can be modified by specifying a start option to initiate WINST.EXE. The

options that can be specified and their functions are shown in the table below.

Option Description
/M This option specifies for WINST.EXE to be initiated from the menu. With the

initiated menu Windows files can be installed after modifying, if necessary, the
contents specified by the WINST.INF file. WINST.INF itself will not be
automatically modified by this menu initiation.

/T<directory> The default target directory of installation differs depending the working
environment of WINST.EXE. If WINST.EXE is executed on a personal
computer, the target directory will be the WINDOWS directory under the current
directory. If WINST.EXE is executed on an IT-2000, the target directory will be
the D:�WINDOWS directory. If this option is specified, installation will be
performed assuming the target directory is <directory>.

Script File By default, WINST.EXE will perform installation according to the WINST.INF
file. The WINST.INF file must exist under the same directory as the
WINST.EXE file. If "Script File" is specified, the user-specified file can be used
instead of the WINST.INF file.

285

Operation at Menu Startup
WINST.EXE can run either on the IT-2000 or on a personal computer. However, since the IT-2000

is not provided with an arrow key to move the bar-type cursor, use the following key operations.

IT-2000 PC
Move cursor up "8" "8" or Up arrow
Move cursor down "2" "2" or Down arrow
Accept ENTER ENTER
Cancel CLR ESC

Outline of WINST.EXE Operations
Basically, WINST.EXE will perform the following tasks. Not all of the tasks are always executed

but information about each task is specified by WINST.INF.

� Copies a file in E:WINDOWS�LOCAL to D:�WINDOWS.

� Correct the contents of the Sytem.INI or Win.INI file according to the language, country code,

and keyboard type to be used.

� Copies the drivers to be used and registers them in SYSTEM.INI and WIN.INI.

� Copies the libraries (DLL/VBX) to be used.

The target directory of installation in the above described processes differs depending on the

execution environment of WINST.EXE. For example, if WINST.EXE is executed on the IT-2000,

SYSTEM.INI, which is to be modified, must be in the D:�WINDOWS directory. However, if

WINST.EXE is executed on a personal computer, the SYSTEM.INI file in the WINDOWS directory

under the current directory will be modified.

The following table shows the difference of the processed contents depending on whether

WINST.EXE was executed on the IT-2000 or on the personal computer.

IT-2000 PC
WINST.INF to be used Same directory as WINST.EXE
Target of installation D:�WINDOWS WINDOWS under current

directory
Copying of LOCAL
directory

From E:�WINDOWS�LOCAL
To D:�WINDOWS

Not copied

Copy source of drivers Same directory as WINST.EXE
INI file to be modified D:�WINDOWS�SYSTEM.INI

D:�WINDOWS�WIN.INI
�WINDOWS�SYSTEM.IN
�WINDOWS�WIN.INI

286

WINST.INF
The WINST.INF file is used to make installation procedure specifications for WINST.EXE. The

method used to write the WINST.INF file is the same as that used for the INI file in MS-Windows.

For information about each setup item refer to the following table.

Setup Section Description
CopyOriginal=
yes or no

If set to "yes", a Windows directory is created in the D drive, and a file in
E:�WINDOWS�LOCAL is copied there. Since existing files will be
overwritten, specify "no" to prevent the contents from being overwritten.
This specification will be ignored if WINST.EXE is started on a personal
computer.

ModifyInternationa
l=yes or no

If set to "yes", the language , country code, and keyboard setups are made.
Information about the setup contents follow the scripts in the “Intl” section.

UpdateDrivers=yes
or no

If set to "yes", the drivers will be updated. This process will be executed
according to the setups described in the “Update” section.

UseMouseCursor=
yes or no

Selects whether the mouse cursor is displayed. If set to "yes", VGA_C.DRV
is registered as the display driver. If set to "no", VGA_NC.DRV is registered
in SYSTEM.INI.

ShellInstall=
yes or no

On the terminal it is recommended to use a start-up procedure that initiates
an application program together with MS-Windows, instead of using Program
Manager. If set to "yes", the specified application program, instead of
Program Manager, will be registered.
This registration process will follow the setup described in the [Shell] section.

[Intl] section This section is referred when ModifyInternational=yes is specified at the
[Setup] section.
Specifies the country code. From the Setting column of the table shown
below select a value to be placed on the right side of the equation.

Country Setting Country Setting
Australia australi Austria Austria
Belgium(Dutch) BelgiumD Belgium(French) BelgiumF
Brazil Brazil Canada(English) CanadaE
Canada(French) CanadaF Denmark Denmark
Finland Finland France France
Germany Germany Iceland Iceland
Ireland Ireland Italy Italy
Mexico Mexico Netherlands Nether
New Zealand NewZea Norway Norway
Portugal Portugal South Korea SouthKor
Spain Spain Sweden Sweden
Switzerland(French) SwitzF Switzerland (German) SwitzG
Switzerland(Italian) SwitzI Taiwan Taiwan

Country=Setting

United Kingdom UK United States US
Specifies the language to be used. From the Setting column of the table
shown below select a value to be placed on the right side of the equation.

Country Kind Setting Country Kind Setting
Danish Danish Dutch Dutch
English(American) america English(International) uk

Finnish Finnish French French
French Canadian FrenchC German German
Icelandic Icelandi Italian Italian
Norwegian Norwegia Portuguese Portugue
Spanish Spanish Spanish(Modern) SpanishM

Language=Setting

Swedish Swedish

287

Specifies the keyboard to be used. From the Setting column of the table
shown below select a value to be placed on the right side of the equation.

Country Kind Setting Country Kind Setting
Belgian BELGIAN Brazilian BRAZILIA
British BRITISH Canadian Multilingual CANADIAN
Danish DANISH Dutch DUTCH
Finnish FINNISH French FRENCH
French Canadian FRENCHC German GERMAN
Icelandic ICELANDI Italian ITALIAN
Latin American LATINA Norwegian NORWEGIA
Portuguese PORTUGUE Spanish SPANISH
Swedish SWEDISH Swiss French SWISSF
Swiss German SWISSG US US

Keyboard=Setting

US-Dvorak US-DVO US-International US-INT
[Update] section This section will be referenced from the [Setup] section if

"UpdateDrivers=yes" is specified.
UpdateSysCall=
yes or no

If set to "yes", SYSCALL.DLL is copied in the WINDOWS directory. The
objective SYSCALL.DLL to be copied must be located in the same
directory as WINST.EXE.

UpdateVKD=
yes or no

If set to "yes", VKD.386 is copied in the WINDOWS directory then
registered in SYSTEM.INI. The objective VKD.386 to be copied must be
located in the same directory as WINST.EXE.

UpdatePenMouse
=yes or no

If set to "yes", PENMOUSE.DRV is copied in the WINDOWS directory
then registered in SYSTEM.INI. The objective PENMOUSE.DRV to be
copied must be located in the same directory as WINST.EXE.

UseKeyPad=
yes or no

If the application program uses the keypad library, it must be set to "yes".
If set to "yes", PADCTRL.VBX is copied in the WINDOWS directory.
The objective PADCTRL.VBX to be copied must be located in the same
directory as WINST.EXE.

UseOBR=
yes or no

If the application program uses the OBR library, it must be set to "yes". If set
to "yes", OBRLIB.DLL is copied in the WINDOWS directory. The objective
OBRLIB.DLL to be copied must be located in the same directory as
WINST.EXE.

UseIrDA=
yes or no

If the application program uses the IrDA communication library or FLINK
library, it must be set to "yes". If set to "yes", both IRDA.DLL and
IRCOMM.DRV are copied in the WINDOWS directory then registered in
SYSTEM.INI and WIN.INI. The objective IRDA.DLL and IRCOMM.DRV
to be copied must be located in the same directory as WINST.EXE.

UseYMODEM=
yes or no

If the application program uses the YMODEM library, it must be set to "yes"
If set to "yes", YMODEM.DLL is copied in the WINDOWS directory. The
objective YMODEM.DLL to be copied must be located in the same directory
as WINST.EXE.

UseFLINK=
yes or no

If the application program uses the FLINK library, it must be set to "yes". If
set to "yes", FLINK.DLL is copied in the WINDOWS directory. The objective
FLINK.DLL to be copied must be located in the same directory as WINS.EXE.

IrDA.COM2 This section is used to specify the contents to be set in WIN.INI if
UserIrDA=yes.
For information about each setup value refer to Chapter 7.9, "COM Driver
for IrDA"

288

Example of Using WINST.EXE

Preparation of necessary files

The table shown below includes files essential for setting up WINST.INF. If, for example, the

application program uses the OBR library, make the following settings for WINST.INF:

UpdateDrivers=yes and UseOBR=yes. Then place OBRLIB.DLL in the same directory as

WINST.EXE/WINST.INF. On a personal computer, WINST.EXE must be executed in the Windows

environment. Windows environment files are stored in the E:�WINDOWS�LOCAL directory of

the IT-2000 main unit. First create the Windows directory in the directory in which the prepared files

are stored, then copy the files from the E:�WINDOWS�LOCAL directory there.

Setup in WINST.INF Essential file Remark
UpdateSysCall=yes SYSCALL.DLL
UpdateVKD=yes VKD.386
UpdatePenMouse=yes PENMOUSE.DRV
UseKeyPad=yes PADCTRL.VBX
UseOBR=yes OBRLIB.DLL
UseIrDA=yes IRDA.DLL

IRCOMM.DRV
COMM.DRV

If executing WINST.EXE on a personal
computer, COMM.DRV must be prepared in
advance. This file is stored in the E:�

WINDOWS directory of the IT-2000.
UseYMODEM=yes YMODEM.DLL
UseFLINK=yes FLINK.DLL FLINK.DLL will call the IRDA library. The

above mentioned IrDA-related files are required.

Example of execution on personal computer
This is an example method of setting up the Windows environment on a personal computer and

transferring a group of created setup files onto the IT-2000.

� Read the essential files from the MASK ROM of the IT-2000.

The files required to run MS-Windows are stored on the MASK ROM drive (E:) of the IT-2000.

MS-Windows re-writes some of these files when it executes. These files must be copied into a

write-permit drive to rewrite them at start-up. These objective rewrite files are contained in the E:

�WINDOWS�LOCAL directory together. Usually, before use, they will be copied in the D:�

WINDOWS directory. Therefore, if installation is performed on a personal computer, these files

should be loaded onto it. In the following example the E:�WINDOWS�LOCAL files are

loaded on the PC card.

289

MD G:�WINDOWS

COPY E:�WINDOWS�LOCAL G: �WINDOWS

If the IrDA interface is used to load COMM.DRV with the following procedure.

COPY E:�WINDOWS�COMM.DRV G:�

COMM.DRV must be stored in the same directory as WINST.EXE. Therefore, in the above

example it is loaded onto the root directory.

� Copy the loaded files onto an appropriate directory in the personal computer.

CD C: �IT-2000 �INSTALL

MD WINDOWS

COPY D:�WINDOWS�*.* WINDOWS

Load the above mentioned COMM.DRV if using the IrDA interface.

COPY D:�COMM.DRV

� Now that the objective installation files, such as WINST.EXE and WINST.INF, have been

 prepared in the INSTALL directory it is time to initiate WINST.EXE. The directory

 configuration at this point in time is as follows:

Fig. 9.5

� Execute WINST.EXE to implement the installation.

� Use a device such as a PC card to copy the installed WINDOWS directory onto the drive D of

the IT-2000.

C:�IT-2000�

WINST.EXE

WINST.INF

COMM.DRV

SYSCALL.DL

WINDOWS�

SYSTEM.INI

WIN.INI

.....

As required

290

Example of execution on the IT-2000
Directly set up the environment by executing WINST.EXE on the IT-2000. If WINST.EXE and the

other essential files are stored in the PC card, the card can be used for installation.

� Prepare the objective installation files, including WINST.EXE and WINST.INF, in the ATA

card.

� Add a line for loading WINST.EXE in the AUTOEXEC.BAT file contained in the ATA card.

� Press the RESET switch to perform card boot. The Windows environment will be automatically

 set up.

291

 APPENDIX A: TFORMAT.EXE

In this chapter, TFORMAT.EXE, the formatter for F-ROM drive (D:) of IT-2000, is explained.

The TFORMAT.EXE is necessary to format the drive (D:). It is resided in the basic drive (C:).

The syntax of the TFORMAT command is;

TFORMAT [drive-letter]

[/LABEL:label]

[/SPARE:n]

[/Y]

Example of Syntax : TFORMAT 2 /SPARE:64

Note:

Even if the TFORMAT.EXE is excuted without option attached, the usage of program can be

observed The following options are supported only by IT-2000.

Drive-letter DOS drive letter of the F-ROM drive. The drive number of F-ROM in IT-2000 is
set to 2. Always specify “2” for the drive.

/LABEL:label A string to be used as the DOS label of the formatted medium.

/SPARE:n Leave n Flash erase units as spare units for garbage collection. The default is 1.
At least one unit should be specified for the Flash medium to operate as a true
read-write device. More than one spare unit may be specified to format media that
have bad Flash units.
In such a case the number of spare units should exceed the number of bad units
by at least 1. It is also possible to specify more than one spare unit in anticipation
of Flash units becoming in the future.
A value of 0 spare units may be specified to create a WORM (Write-Once-Read-
Many) disk. When formatting with this option, the Flash medium can be written
once only, after which it will become a read-only medium. File System will report
that the medium is write-protected when space for writing is exhausted.
This option provides very limited functionality, and should not be used except in
special cases. The option has the advantage of lowering the formatting overhead
of File System, since a spare Flash erase zone is not needed for spare reclamation.

/Y Do not pause for confirmation before beginning to format.

292

APPENDIX B: PC Card Driver

In this chapter, each PC card driver which is called by CONFIG.SYS or by AUTOEXEC.BAT is

explained. These PC card drivers and INI file are stored in the directory, C:�CARDSOFT, on the

basic drive (C:).

SystemSoft’s CardWizard PC card solution provides OEMs with a complete software solution for

integrating PCMCIA controllers and slots into their computers. The CardWizard software suite

provides a complete “plug and play” system software solution for both DOS and Windows 3.1.

This solution consists of the following drives and utilities. Please be aware that your particular

configuration may not include all drivers and utilities.

Socket Services (SS365SL.EXE)
Socket Services provides a standard software interface to host controller chips and isolates the

socket hardware from higher level software. Socket Services includes functions such as configuring

a socket for an I/O or memory interface and controlling socket power voltages. The Socket Services

driver included depends upon the host controller chip that the system supports.

Option

/SKT:x Number of supported slots

Range: 1 to 4 (Default: 4)

Specifies the number of slots that driver supports. On machines that have a PCMCIA adaptor that

can support more slots than are present in the machines, this value should be set to the exact

number of slots present.

Card Services (CS.EXE)
The Card Services driver manages competition for system resources and manages adapter and card

resources and configuration

Option

/POLL Poll for status change

Range : 0 to 1 (Default : 0)

When set to 1, Card Services will not use a card-status-change interrupt to determine status changes

on the system. It will instead poll for status changes (inserted card has been removed, empty slot

is now occupied, etc.). This parameter should be set to 1 if the system does not have an available

IRQ to use as a card-status-change interrupt, or if it does not support a card-status-change interrupt.

293

Card Identification (CARDID.EXE)
This client device driver detects the insertion and removal of PC cards, automatically determines the

card type upon insertion, and then configures the card and slot/adaptor (if it is an I/O Card).

SRAM Card Driver (MTSRAM.EXE)
This SystemSoft device driver recognizes and supports SRAM cards.

IDE/ATA Support (ATADRV.EXE)
ATADRV.EXE is a block device driver that supports ATA Type II Flash Disk or ATA Type III

hard disk PC cards.

Option

/S:x Safe mode

Range: 0 to 8 (Default: 2)

Specifies if ATADRV is to be run in slave mode. The MTD Driver (MTDDRV) is the only master

control driver currently available. Installs the ATADRV device driver as a slave(/S:x) to MTDDRV.

It also specifies the number of devices (1 to 8) it can support. A value of 0 can also be used with /D

or /S. When a value of 0 is used, only the mode that was specified (/D or /S) is implemented, not the

number of devices assigned during installation or specified using the CONFIG utility. When this

/S switch is used, ATADRV must be installed in CONFIG.SYS before MTDDRV and both

ATADRV and MTDDRV must be installed before CARDID. Refer to ATA Driver Modes section

which follows.

Option

/D:x Number of drive units

Range: 0 to 8 (Default: 2)

Specifies the number of drives that the system supports when installed either as a block device driver

or as a slave device driver. Installs the ATADRV device driver as a block device driver (/D:x).

It also specifies the number of drives (1 to 8) it can support. A value of 0 can also be used with /D or

/S. When a value of 0 is used, only the mode that was specified (/D or /S) is implemented, not the

number of drives assigned during installation or specified using the CONFIG utility. When the /D

switch is used, ATADRV must be installed in CONFIG.SYS before CARDID.

294

Refer to ATA Driver Modes section which follows.

Card Service Power Management Enabler (CS_APM.EXE)
CS_APM.EXE is a DOS-based background task that enables Card Services to process system power

management Suspend/Resume requests. When a Suspend request is initiated by system power

management software, CS_APM notifies Card Services, which then verifies that the system

PCMCIA slots are idle, and can be powered down. Card Services then passes this information back

to CS_APM, which then notifies the power management software that the sockets can be powered

off. When a Resume request is received by CS_APM, it informs Card Services, which then powers

the sockets on again.

Memory Technology Driver (MTDDRV.EXE)
This component must be installed in order to support all Memory cards. It works in conjunction with

card-specific MTDs to support a wide variety of current Flash Memory cards. It also supports

SRAM cards (providing MTSRAM.EXE is also installed), and allows sharing of drive letters

between the different types of memory cards (Flash, SRAM, and ATA).

SSVCD.386(SSVCD311.386 for Windows for Workgroups), SSVRDD.386,
PCCARD.386 (for IT-2000W only)
These drivers permit hot insertion/removal of communications I/O, memory, and removable drive

cards within Windows. These files are stored in the directory, E:�Windows .

295

APPENDIX C: Acquisition of Suspend/Resume Event and Power Status

Overview
Suspend/Resume event is notified by multiplex interrupt (INT2Fh). If any event such as power

ON/OFF occurs, consequently the interrupt (INT2Fh) will occur. An application can acquire the

event by catching the interrupt. Since the interrupt INT2Fh is multiplex interrupt, application must

reset values in all the registers to the previous values after catching the interrupt and then return the

control to the old-vector.

Broadcast for Power Event
INT2Fh Input:

AH = 53h
AL = 0Bh
BH = (Reserved)
BL = 1 System wait request

= 2 System abortion request
= 3 Normal resume notification (if the method of the previous OFF

is by normal suspend.)
= 4 Critical resume notification (if the method of the previous OFF is by

critical suspend.)
= 5 Battery state notification

Output:
BH = 80h Application refuses request.

 = 00h Others

The power event is notified by POWER.EXE. In order to use the notification function,
POWER.EXE must be pre-installed. An application must check first if the
POWER.EXE has been installed or not by using the functions detailed below.

Function to Check POWER.EXE
INT2Fh Input:

AH = 54h
AL = 00h

Output:
AX = 5400h Not installed.

 = others Version numbers
BH = 50h “P”
BL = 4Dh “M”

296

Acquisition of Power Status
Application can acquire current power status by calling APM BIOS through the interrupt INT15h.

The following power statuses can be acquired by using the method.

� AC line status

� Battery status

� Battery flag

� Remaining battery life - percentage of charge

� Remaining battery life - time unites

The functions detailed below will acquire the power statuses stated above.

Acquisition of Power Status
INT15h Input:

AH = 53h
AL = 0Ah
BX = 0001h

Output:
If function successful:

Carry = 0
BH = AC line status

00h Off-line
01h On-line
02h On backup power
FFh Unknown
All other values are reserved.

BL = Battery status
00h High
01h Low
02h Critical
03h Charging
FFh Unknown
All other values are reserved.

CH = Battery flag
bit 0 = 1 High
bit 1 = 1 Low
bit 2 = 1 Critical
bit 3 = 1 Charging
bit 7 = 1 No system battery
All other bits are reserved.
FFh Unknown
All other values are reserved.

CL = Remaining battery life-percentage of charge
0 to 100 : Percentage of the battery charging, 100 represents full

charge in battery.
FFh : Unknown
All other values are reserved.

297

DX = Remaining battery life - time unit
bit 15 = 0 : Time unit is in second.

1 : Time unit is in minute
bits 14 to 0 = value for second or minutes

0 to 7FFFh : Valid value for second or minute
FFh : Unknown

If function unsuccessful:
Carry = 1
AH = Error code

 09h : Unrecognized device ID

End of the Manual

